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ABSTRACT

Conventional oarsinq techniques use grammars as embeoded

procedural knowledoe bases in mechanisms which are caoable

of translating words in the language defined into equivalent

parse trees. The aporoach described in this paper uses

context-free grammars as data allowinq access to synthesis

templates which enable the user to create end interact with

parse trees directly. The advantages of this aporoach are

the utility of human-oriented grammars, the dynamic inter-

changeability of language definitions# immediate error re-

jection, and the ability to handle partially comolete parse

trees. The design for a orototype programming environment

using grammar-driven synthesis is presented.
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I. INTRODUCTION

There is a great deal of interest in the improvement of

program and system development efficiency, primarily because

software costs have risen dramatically in recent years as a

fraction of total system development costs. One approacn to

the improvement of efficiency is the provision of an

enhanced set of interactive orogram develooment tools for

the programmer and the increased automation of program

development. Many such efforts involve the notion of a

worogramming environment', that is, an interactive

environment in which a wide selection of software tools is

provided as an Integrated package, with a consistent and

relatively concise command structure. Typically, a means is

provided to allow the programmer to work within the language

being used for the program, without having to descend to the

object language level to perform any of the functions

necessary to create, modify, or test the program.

As a concrete example, the reader's attention is drawn

to the most wioely-known integrated programming environment,

the APL system liverson, 1962J. When using this system, the

programmer is able to perform all steps in the program

development process without ever having to issue explicit

commands to the host operating system. The AFL environment

itself provides an integrated set of facilities for storing,

editing, and debugqing modules which are arranqed in

7
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worksPaces and libraries, access to which is available using

commands that are mart of tne APL language detinition

itself. In additionp so far as the user is concerned, there

is no notion of translating# linking, or loading indivioual

functions or programs. To the orogrammer the system appears

to be capable of evaluating programs written in APL witnout

translation, and all of the Programmer's interactions with

the APL programs defined occur within the syntactic

framework of the original source language.

Other language-oriented programming environments are

under development or in use, notably the ECL project at

Harvard LWegbreit et. al., 19741, which is based on a LISP-

like Programming language, and the GANDALF project,

(Habermann1979lo which is based on the new Department of

Defense language, ADA. Both of these projects are designed

to offer an environment which is even more intensively

syntax-oriented than that offered by APL. In addition,

these systems incorporate into an integrated environment a

wide ranqe of facilities normally provioed by the host

operating system. The two human engineering iaeas

motivating the design of Such systems are to free the

proqrammer from the necessity of learning two command

structures, and the ability to reference and access parts of

the modules being developed using the natural structure

imposed by the syntax of the language in which they are

written.

M M - --- m a



One of the crucial Problems which must oe solved in

implemehtina such an environment is the need to provide more

or less continual access to the evaluable program structure

in a syntax-oriented fashion. Conceptually, the system must

understand* the syntactical structure of the program during

its entire existence, not simply during the phase in which

it is entered into the system. Thus, the internal structure

of the Program must be sufficiently complex to reflect the

syntax of the program at all times, and facilities to

utilize this structure must be on-line during the entire

period of program development. Since such a requirement

must be met for other reasons, a syntax-directed editor is

often offerea as the orimary means of program entry. Such

an editor utilizes the on-line knowledge of program

structure to allow additions, deletions, and modifications

of the program structure to be made baseo on the natural

syntactical units of the program, rather than the more usual

line-oriented approach.

Our research was originally motivated by this

application for syntax-directea editing, since the program

access algorithms for the editor are the very routines

involved in Program structure access throughout its life in

the programming environment. me wished to investigate the

task of generating a syntax-directed editor from a grammar

description, in the hopes that procedures for routinely

9
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performing such a task Could be described in general terms,

if not altogether automated. Ihe belief that a set of

usdole rules could oe found was encouragea oy tne fact that

techniques for generating a functionally analogous system, a

parser, from a BNF grammar description are well-unaerstood

and, in fact, frequently automated.

ihe techniques reoortea in this paper are fundamentally

very simple, but lie in a direction diametrically opposea to

those involved in parser generation. A parser is a

mechanism for taking a correct word in some language, and

recreating the syntactical structure inherent in that word

from the grammar of the language. Tnat this structure can

be deduced from what would otherwise be a meaningless string

of symbols is a consequence of the fact that the programmer

used a grammar to create it that was equivalent to that used

oy the creator of the parser. The program itself represents

a sequentialized version of parallel, hierarchical

structures, one in the mina of the Programmer, and the other

internal to the computer system. The programmer has encoded

the structure into the message, and the parser is the

mechanism needed to decode it.

Viewed in this light, the use of a parser-based

translation system is a very odd solution indeea to the

problem of entering a program structure into a Computer

system for subsequent execution: it is as if a piano were

were to be moved it into a house by tearing it into small

)e



pieces, appropriately labelling each ones pushing the pieces

throuqh a mail slot, and relying on an automaton inside the

house to reassemble the piano. This procedure is

notoriously error-orone, and once accomplished, it is

extremely difficult for the programmer to gain access in a

human-oriented way to the actual structure built. Extending

the simile used above, it is as if we could only confirm

that the piano had been reconstructed properly by listening

to the music emanating from the interior of the house after

the piano had been reassembled!

Of course, the historical cause for such a solution is

clear: most general-purpose computing systems, at the time

language translation technology was elaborated, relied

heavily on sequential, batch-oriented input mechanisms such

as card readers, and were like houses without front doors,

only mail slots. There was a driving need to invent such

mechanisms as parsers so that high-level Programming could

oe done at all.

However, with the increased reliance on interactive,

remote-entry time-snaring facilities, a radically different

solution to the Problem of program entry can be

investigated. The Program structure can be interactively

built within the computer in the first place. Sucn a

solution obviates the need for a parser altogether.

Instead, the editor and the programmer cooperate to build

the desired structure airectly. The grammatical
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specifications of the language are not used indirectly, to

build a decoder for an unnecessary representation, out are

used simoly as data to guide an aporopriate, airect

synthesis of a well-structured orogram reoresentation.

This thesis describes such mechanisms in enough detail

to serve as the oasis for the implementation of a language

independent program entry System. the system is language

independent in the sense that data corresoonding very

closely to the grammar of a context-free language itself, in

the form of a finite set of static Otransformations", is

directly interpreted by the system to form structures well-

formed under that grammar. If the grammar data is changed.

the same system supports a new language.

Oe have adopted the term "grammar-driven synthesis" to

describe the function ot the systems discussed in this

paper, in order to suggest the idea that grammars with a

rich set of operators are utilized as knowledge bases with

little or no Pro-processing. This direct utilization of a

human-oriented grammar is to be contrasted, for instance,

with the extensive pre-processing required to derive

transition tables for driving a shift-reouce parser.

Chapter II describes in very general terms several basic

mechanisms for Performing such qrammar-driven syntnesis,

relating -them to the fundamental idea of oerforming a valid

derivation under a context-free grammar. Chapter III

provides a further elaboration of these mechanisms, aimed

. ..



toward the more concrete goal of oeing able not only to

create, but also to modify and delete parts of a

hierarchical program structure, in a syntactical)y

consistent way. Chapter 1Vt which is something of a

digressiOn, considers from the viewpoint of database design

how programs may be represented and accessed as databases

during modification and during storage or transmission from

one place or time to another. In Chapter V, a conceptual

description is presented of a prototype orogramming

environment, designed to allow the orogramming language in

use to be changed by simply changing the language

description installed in the system. This desiqn is

concerned solely with the facilities for program

modification and entry, and is based on the assumotion that

a means for describing in a relatively simole way the

semantic content of the program structures to oe ouilt can

be found. Finally# in Chapter VI, the results of the

research undertaken so far are summarized, and some

suggestions for future investigations are maae. '1
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I. GRAMMAR-DRIVEN SYNTHESIS

A. INTRODUCTION

In this chaoter, several models for grammar-driven

editors of increasing complexity are described in terms of

the theory of context-free orammars. Each editor receives

two sequences of input symbols, the first representing a

context-free grammar, and the second a series of commands

which guides the synthesis of a sentential form of the

grammar initially provided. The described mechanisms are

capable of utilizing very general classes of context-free

grammars, including ambiguous and incomplete grammars as

well as grammars with useless productions (i.e., productions

which do not occur in the derivation sequence for any word

of the defined language.) For this reason# we adopt the view

that the fundamental product produced by such a synthesizer

is a sentential form, possibly containing non-terminal as

well as terminal symbols.

The first syntax-directed editor oroduced Oy the

research group along the lines outlined in this section was

written by B. MacLennan in Novemberp 1980 in LISP and called

"A Universal Syntax-Directed Eaitor". The orimary motiva-

tion for the analysis of grammar-driven synthesis presented

in this chapter was to perform an exhaustive review of the

algorithms employed and to connect them to the mathematical

14



theory of context-free grammars in such a way as to justify

the adjective "universal"# as well as to provioe reasonably

convincing informal arguments that no critical loopholes had

been missed. This technology for using a grammar is com-

pared with conventional parsing techniques, and the feasi-

bility of using such synthesizers as the foundation of a

system providing interactive access to a nierarchically

organized database (such as that representing an executable

program structure) is discussed.

B. GRAMMARS AND SENTENTIAL FORMS

It is assumed that the reader is familiar witm the

Backus-Naur Formp or 8NFP notation for mathematical gram-

mars. Appendix A contains a formal specification for this

notational system. The basic concepts from the theory of

context-free grammars used throughout this section are

adapted from [Hopcroft and Ullman, 19791. The present sec-

tion is provided primarily for background and continuity.

A context-free grammar has the following elements:

-- A finite set T of terminal symbols,

-- A finite set N of non-terminal symbolsp

disjoint from TF

-- A finite set P of productions, each expressed

in BNF notation,

A designated target non-terminal t

included in N.

15
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In addition, for the grammar to be context-free, every pro-

duction must be of the form

< a > ::= XP

where A is a string (possibly empty) of terminal and non-

terminal symbols, and a is a non-terminal symbol. The acro-

nym "CFG" is commonly used to aboreviate the phrase

"context-free grammar*. Throughout this chaoter, we will

adopt the convention of using lower-case letters from the

beginning of the alphabet to represent non-terminal symbols,

lower-case letters from the end of the alphabet to represent

terminal symbols, and upper case letters to represent

strings (possibly empty) of terminals and non-terminals.

Since we will be considering only context-free grammarse the

term grammar* will always be understood to mean "context-

free grammar". We shall also assume that all grammars con-

sidered are non-trivial, that is, that the sets T and P are

non-empty.

1. Sentential forms.

The basic intuitive concept underlyinq the idea of a

replacement in a string of a single non-terminal symbol by

an equivalent string of terminals and non-terminals as

specified by some production.

Let G ( T, No Pr t ) be a grammar, and let $(M)

and S(2) be strings of symbols. (We adopt the notational

convenience of using parenthesized inteqers to subscript

16



variable names.) Then we say S(1) derives S(2) in one steo,

if S(M) and S(2) have the form

S(1) Z XaZ, S(2) = XYZ,

and there exists a oroduction in the set P with the form

< a > ::: Y.

In this case, we write

S=) :)S(2).

In an analogous fashion, we may define the notion of

a leftmost derivation, for which the string X above contains

no non-terminal symbols.

A strinq S is said to aerive a string S' in zero or

more steps, or simply derive a string S'P if one of the fol-

lowing conditions is true: either S = 5', or else there

exists a series of strings S(1), S(2), . . . , S(n) such

that S => 5(1), S(1) S> 3(2), . . ., S(n) => S'. In this

caser we write

S *=> so.

A string W is said to be a sentential form of G if

t *=) N, where t is the target symbol of G. A sentential

form with no non-terminal symbols is called a word. The set

of all such words is called the language defined by G. Such

a language is called a context-free language, or "eFL*.

A grammar is said to be ambiguous if there exists a

word in the language defined by the grammar with two or more

distinct leftmost derivations. There exist languages

17
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defined by a context-free grammar that are inherently ambi-

guous: that is, which cannot be defined by an unambiquous

context-free grammar.

2. ARGOT notation.

Ahile BNF notation is convenient for theoretical

manipulations because it incorporates a single underlying

idea, that of replacement in accordance with a oroduction, a

more powerful notation for practical specification of

languages is desirable.

For our purposes, we will adapt a system of notation

called ARGOT notation, with a concise yet powerful set of

replacement operators reminiscent of the operators used in

the theory of regular expressions. This notation was

developed as the core of a Pattern-matching Programming

language called ARGOT (MacLennan 19751. In fact, we will

use a restricted version of this notation# but it is

convenient to introduce the full notation first ana then

restrict it as required. A formal description of ARGOT

notation is Provided in Appendix A.

a. Rules and ARGOT expressions.

In place of a set of productions, ARGOT uses a

list of named rules, each of the form:

name: expression.

Rule names perform the same role in ARGOT notation as non-

terminal symbols in BNF notation; however, it is required

that each rule have a unique rule name.

18



Terminal symbols or strings are denoted by

underlinininge use of boldface tyne, or enclosure ov ouote

marks ("), whichever is appropriate for the typeface avail-

able.

The colon corresponds to the BNF metasymbol

0::=Np separating the rule name from the expression denoting

how an occurrence of that rule name may be exoanded. Rules

are terminated by periods to separate rules unambiguously.

The expression half of a rule is an indefinitely

deep hierarchy of elementary replacement operations and

sub-expressions, eventually terminating on the deepest lev-

els with terminal strings or rule names. Each operator

allows a specific replacement ooerationt which may be

thought of as being applied from the shallowest level of the

hierarchy Downward in a non-Deterministic fashion. Thus, a

single ARGOT rule corresponds to a number of eauivalent BNF

productions.

b. Concatenation

The simplest replacement operator is that of

concatenation# or replacement of a single construct oy a

series of sub-constructs. The concatenation operator is

denoted by simple juxtaposition. Concatenated expressions

may be grouped into a single construct and used as a sub-

expression by means of parentheses. A single 8NF production

expresses the same idea as a simple ARGOT concatenation

19



(except that in ARGOT an "empty" rule cannot occur). Thus,

the BNF production

<proaram> ::= program <identifier> <block>

is equivalent to the ARGOT rule

Program: "program" identifier block

The occurrence of a rule name means that that position in

the sequence is to be expanded as defined by the named rule,

while the occurrence of a terminal string means that that

position in the sequence is to be filled by the quoted

string.

c. Optional constructs.

An optional sub-expression is surrounded by

brackets. The meaning of this operator is that at the

specified point, the indicated sub-expression may either be

placed into the symbol string or omitted. Thus, the rule

statement: I label I action.

allows replacement of "statement" by either "label action"

or by "action".

d. Alternation Operators.

Two alternation operators are provided, simple

and optional alternation. Simple alternation is denoted by

means of a list of sub-expressions separated by vertical

strokes and surrounded by curly brackets. The construct may

be expanded by choosing one of the sub-constructs as the

replacement. Thus, by the rule

digit: ("0" "i" "2"k

20



the rule name "digit" may be replaced by any one of "0",

or "2"The ootional alternation construct is denoted in

the same way as a simple alternation# except that square

brackets are used instead of curly brackets. This operator

allows replacement not only by any of the inaicated alterna-

tivest but also by the empty string. For example, the rule:

sign: I "+*" ' "-" 1.

allows the rule name "sign" to be replaced by b" y py "-M

or to be deleted (replaced by the empty string).

e. Iteration operators.

Three iteration operators are orovided. The

required iteration, or simple iteration# is denoted bv a

plus sign followed by a sub-expression. This construct

allows replacement by one or mope instances of the sub-

expression. Thus, the rule

integer: +digit.

means that an instance of "inteqer" can be replaced by

Odigit", by "digit digit", by "digit digit digit", etc.

Ootional iteration, Cenoteo by the asterisk fol-

lowed by a sub-exoression, implies that the construct can be

replaced by zero or more instances of the sub-exoression.

Thus, the rule

&string: *"a".

allows expansion of the rule name "astring" to the emoty

string, or to any of the strings *a", "aa", "aaa", etc.

21



The final form of iteration, list iteration, is

denoted by surrounding two sub-exoressions with a sharp sign

on the left and three periods on the riont. It allows

replacement by one or more instances of the first suo-

expression, separated by instances of the second sub-

expression. Thus, the rule

list: # atom ,N ... .

allows replacement of the rule name "list" by "atom", "atom,

atom", *atom, atom, atom", etc.

f. Properties of the ARGOT notation.

The most important feature of the notation is,

that although it is richer in operators and in this sense

more expressive than BNF notation, it is not more powerful.

A language is context-free if, and only if, it is expressi-

ble as a finite set of ARGOT rules. This can be shown by

reducing ARGOT to BNF notation, that is, by providing algo-

rithms for transforming any finite set of context-free 3NF

productions to an equivalent set of ARGOT rules, and vice-

versa. This constructive proof is straightforward and unin-

formative, as the desired transformations are fairly evident

on an intuitive level.

As originally defined, the complete ARGOT pro-

gramming language, which allows syntactically-keyed comouta-

tion as well as input and output parameters to be passed

between rules* has the full computational power of tne

22



lambda calculus (MacLennan 1975). The notational suoset we

power of the ARGOT language oeflneo in this reference.

The notation can also be regarded as a generali-

zation of the notion of a regular exoression. me may think

of a set of ARGOT rules as being a set of namea regular

expressions, and then allow rules to refer to themselves

directly or indirectly to achieve the power of a context-

free grammar. This notational similarity allows the simole

statement of a sufficient (but not necessary) condition for

the regularity of an ARGOT-defined language. If a finite

set of ARGOT rules can be arranged in such an order that the

right-hand side of each rule refers only to rules occurring

further down the list, the language defined is regular.

That this is so can be seen fairly readily. Such an order-

ing allows replacement of each rule name except for that of

the target by the right-hand side of each of the named rules

in a terminating sequence. The resulting single rule is

simoly a regular expression with operators and terminal

strinos alone on the right-hand side.

This result is of practical use, since if we

know that a language is regular, then we know that simple

(non-recursive) algorithms exist for Processing it. The

algorithms for orocessing it are considerably less compli-

cated than if the language is context-free but not regular,

in which case some sort of recursive mechanism is required.

23
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3. Restricted ARGOT notation (R-ARGOT).

The full ARGOT notation, as described, has more

expressive power than required for the application we are

interested in, for two reasons:

-- its indefinitely nested structure reauires recursive

routines to access the sub-expressions in a rule, and

-- highly nested exoressions are too complicated to ex-

press easily-learned syntax units for the user.

That the notation allows indefinite nesting is implied oy

the fact that the notation itself is an inherently context-

free language. Since we shall be accessing the grammatical

descriptions of languaoes as databases, it is highly desir-

able to be able to describe and encode simole, efficient

access routines. In addition, a simpler notation will allow

us to conceptualize a given grammar as consisting of a col-

lection of rules each of which is formatted in one of a tin-

ite number of ways.

Ahat we would like is a notation that is expressible

as a regular expression (as is BNF notation) so that it is

easily orocessed, but retains an adequate amount of exores-

sive power. These goals are met by appropriately restrict-

ing the nesting allowed within ARGOT expressions. The

resulting notation is called R-ARGOT notation (for either

restricted or regular ARGOT).

The set of available operators is restricted to con-

catenatione req-ired iteration, simple alternation, list
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iteration, and the optional operator. The other operators

are rendered superfluous by the nesting restriction.

R-ARGOT expressions (rule right-hand sides) may oe

simple or complex. A simole exoression is a concatenation

of one or more terminal strinos, rule names, or ootional

rule names. A complex expression is an alternation,

required iteration, or list iteration. Any sub-expression

in an alternation or iteration must oe a rule-name. The

first sub-expression in a list operation must be a rule-

name. The second may be either a rule-name or terminal

string.

The effect of these rules is to limit the number of

possible formats available for the grammar designer to a

small set. Alternations and simple iteration operators will

always be the topmost operator in a given rule exoression if

they occur at all, and the operands will be simple rule-

names in such expressions. The list iteration operator must

also be topmost, and only the second operand may be other

than a rule-name, and if so, must be a single terminal

string. Only if the concatenation operator is topmost may

the operands be alternations, and even in this case no

further ooerators are allowed in the rule.

It is something of a surprise that such stringent

restrictions result in grammars that are reasonably well-

oriented toward human comprehension. The rules that result,

when they are read informally, seem to exoress natural
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syntactic units. It must oe admitted that an imorovement in

human comprehensibility might be attained by allowing one

level of nesting. However, the simplifications in the

rule-access algorithms proviaed by naming each suO-

expression are so striking we have been led to retain K-

ARGOT as described here.

The languages defined in Aopendices A and d are

defined using the R-ARGOT notation. In Particular, the

reader's attention is drawn to Appendix 6, which contains a

grammar for the PASCAL programming language. Most of the

syntactic rules can be seen to correscond to natural Syntac-

tic Constructs within the language in a way that BNF Produc-

tions do not.

One irritation encountered in the use of R-ARGOT is

the implicit requirement to rename terminal strings which

carry semantic information (that is, that occur as alterna-

tives within an alternation). Where we would like to write,

for instance# rules such as

string: + character.

character: ( "a" "b" . . . "z" )o

we must instead write
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string: + character.

character: ( a : b . . z )

a: "a*.

b: "b*.

z: "z".

To avoid the necessity to provide a large number of trivial

rules renaming tokens, we shall assume the existence of a

facility in the system for escaoing from the normal moae of

grammar-driven synthesis to predefined lexical synthesizers.

Such a facility is analogous to the separation of the

analysis task between the Parser and scanner in a conven-

tional compiler. Thus, we will assume that Predefined rules

exist with such names as "identifier", "integer", "string",

etc. In the system to be implemented, these rule names

correspond to predefined input scanners and parsers avail-

able to the language implementer.

C. A SIMPLE GRAMMAR-DRIVEN STRING EDITOR

In this section, a simple mechanism is described caoable

of generating sentential forms from an input grammar in 9NF

notation. This mechanism serves as the fundamental model

for grammar-driven editing using interactive production

selection to direct the course of the synthesis.

27



1. The Basic Mechanism.

Ae may think of the basic mechanism, whiCM Will Oe

hereafter referred to as a Grammar-Oriven String Editor

(GDSE), as a multitepe Turing Machine with two input tapes,

labeled PHA*E1 INPUT and PHASE2 INPUT, four internal tapes

lapeled GRAMMAR, BUFFER, CURSOR, and PRODIUCTION, and an out-

put tape labeled OUTPUT. The PHASE1 INPUT tape contains a

context-free BNF arammar, which is storeo internally on the

GRAMMAR tape. The PHASE2 INPUT tape contains a series of

editing commands which will be more fully aescribed shortly.

The BUFFER tape is used as a work area to synthesize a sen-

tential form. The CURSOR and PRODUCTION tapes are used to

hold indefinitely large integers which number the non-

terminal in the SUFFER currently being expanded, and the

production being applied from the GRAMMAr tape, respec-

tively. The OUTPUT tape is provided simply as a conceptual

convenience: it is used to mode) the transfer of the final

form produced to secondary storage.

The operation of the mechanism is as follows:

a. Phase One -- Copy and Check Grammar.

The PHASEI INPUT tape is copied onto the GRAAMAR

tape. As this is done, the contents of the input tape are

parsed in accordance with the grammar listed in Appendix A

for BNF notation. Since this grs'. r is regular, the inout

tape can be rejected or accepted as a legitimate context-

free grammar in a finite number of steps. Without loss of
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generality, we assume that the first production names the

target symbol as its left-hand side.

b. Phase Two -- initialization.

In phase two, the mechanism is used to generate

sentential forms via valid derivation steps on the dUFFER

tape. First, the target non-terminal is copiea from the

first production onto the BUFFER tape. Then the followinq

loop is executed. Each cycle corresponds to one step of a

valid derivation.

c. Phase Two -- Loop.

A symbol is read from the PHASE2 INPUT tape. if

it is '0' (vfor 'Quit'), control is passea to the next step

beyond the loop.

If the order to quit is not received# two

integers are copied from the PHASe2 INPUT tape. These

integers are assumed to encode the relative position in the

buffer of the next non-terminal to be replaced, and the pro-

duction in the grammar to be used to replace it, both of

the integers must be checked to be sure that they refer to a

real non-terminal in the BUFFER and to a real production in

the GRAMMAR. If they do, the left-hand side of the selected

production is checked to make sure it is the same as the

selected non-terminal. If any of these checks fail, the

integers are simply ignored and the loop re-entered from the

beginning. Otherwise, the indicated replacement is per-

formed. In detail, the mechanism performs the following
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SteDS5.

First, an integer (suitably encoded) is read

from PHASE2 INPUT and placed in the CURSOR register. Sup-

Pose this integer is N. The N'th non-terminal symool on the

BUFFER tape is located. If there is none, control is

returned to the top of the loop.

Another integer is then read from PHASE2 INPUT

and copied onto the PRODUCTION tape. Suppose it is 4. The

M'th production is located: if there is none, control is

returned to the top of the loop.

The heads are then moved to the N'th non-

terminal on the BUFFER taper and the left-hand side of the

M'th production, and the two non-terminals compared. if

they are not the same, control is returned to the top of the

1000.

If they are the same, the right-hand side of the

M'th production is used to replace the N'th non-terminal on

the BUFFER tape, moving characters to the right to make room

for the new symbols as needed.

Finally, control is returned to the top of the

loop.

d. Phase 2 -- End.

The BUFFER tape is copied to UUTPUT and the

machine halts, accepting.
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e. Synopsis.

The algorithm described is nothinq more than a

restatement, in somewhat more detailed terms, of the funda-

mental method for producing some valid sentential form under

a context-free grammar. Determinism has been introduced ov

using an additional input phase, which encodes, as the

derivation Proceeds, choices for the next non-terminal to be

expanded and the Production to be used. Erroneous input

during this phase is ignored. This simple mechanism cap-

tures the essential flavor of grammar-ariven synthesis. We

may note that the Contents of the PHASE2 INPUT tane may be

obtained in sequence when they are needed, and are never

re-used. Thus, this input process serves as an entirely

adecuate model for an interactive process. Throughout the

remainder of this section, we will assume that the "Phase

Two User" is able to examine the internal state of the

machine in order to determine the current state of the syn-

thesis and decide what to do next. We make this assumotion

to avoid cluttering the mechanism descriptions with outout

routines, which do not have any impact on the Current szate

of the synthesis in any event.

2. Properties of the GDSE.

The fundamental property possessed by the GDSE is

that it never contains an invalid form in the BUFFER, and

that a PHASE2 INPUT string exists which will cause the

machine to halt, accepting, with any desired sentential form
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on the OUTPUT tape.

In one sense, these assertions are hardly suscepti-

b1e to a convincing proof, since the mechanism is so oovi-

ously related to the notion of valid derivation in the first

place that any proof is likely to be less convincing than

this intuition. The Proof can be carried throuqh based on

an induction over the number of times the mechanism Passes

through the loop. Since the BUFFER contains a valid senten-

tial form (the target symbol) when the loop is entered the

first time, and each step in the loop either leaves the

BUFFER unchanged or chanqes one valid form to another Ov

expanding a single non-terminal in accordance with a produc-

tion in the input grammar, the BUFFER contains a valid sen-

tential form whenever the loop is entered. Nhen the O'u

symbol is read, the last form generated is placed on the

OUTPUT tape prior to acceptance. (The machine may reject if

the '' symbol is missing).

Given a desired sentential form, there exists some

valid derivation sequence, starting with the target symool,

such that each derives in one step the next, and the last is

the desired form. (There may be more than one such sequence

of steps). Each step consists of selection of a non-

terminal in the last derivation, and its replacement by the

right-hand side of some production. Thus# qiven the list of

derivation steps, it is easy to construct a list of pairs of

integers for the PHASE2 INPUT tape which will recreate these
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steps in the BUFFER. Hence for any sentential form, there

exists a PHASE2 INPUT tace which will cause that form to

appear in the BUFFER. Appendinq a 'U' on this taoe will

cause the machine to halt, acceotinQ, with the desired form

on the OUTPUT tape.

3. Discussion.

As Previously mentioned, although conceotually sim-

ple, the GOSE is the underlying model for all of our more

elaborate grammar-driven mechanisms. The GOSE plays a role

for grammar-driven synthesizers analogous to that olayed oy

a Deterministic Push-Down Automaton (OPOA) for parser-based

systems. The fundamental simplicity of grammar-driven syn-

thesizers arises from the fact that this underlying mechan-

ism is a direct restatement, with determinism incorporated,

of the very notion of a sequence of steps in a valid deriva-

tion. The resulting simplicity is to be contrasted with the

much more complicated "set of items" constructiort required

to qenerate the DPDA associated with a grammar, which causes

the relation between a grammar and its parser to be very

indirect (Aho and Uliman 1977). The GDSE utilizes the gram-

mar directly to synthesize words, rather than using it

indirectly to Produce a derivative mechanism able to decoa

words.

We might note that we have allowed the output of the

GOSE to be any valid sentential form, not requiring it to be

composed of strictly terminal symbols. In other wordst we
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are taking as the fundamental entity defined by a grammar, a

sentential form instead of a word. Lt is easy enough to fix

uo the mechanism so that before halting, it checks the

string in the BUFFER for non-terminals and accepts only if

there are none. Our decision not to do so is based on tne

philosophy that additional restrictions should not be intro-

duced so long as the output without them is sensible. In

practical terms, a valid sentential form under a grammar for

a programming language corresponds to a partially complete,

yet well-structured program, with the missing parts labeled

appropriately by non-terminal symbols. In fact, the ability

to deal with Such "reasonable" partial programs is one of

the primary advantages of a programming system oased on

grammar-driven synthesis.

Retaining this capability yields an even more

interesting property. No Problem develops if the GOSE

encounters a non-terminal in the right-hand sioe of some

production which is undefined. Once this non-terminal is

copied into the BUFFER it can never be replaced, so once

this action has been taken a word will never be derived.

However, the use of an undefined non-terminal can yield a

class of sentential forms. In the context of grammars

defining programming languages, the described situation

might occur if some subset of the complete grammar for the

target language was in use. The resulting form would be

meaningul, and lead to a complete program, once the complete
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grammar were defined.

Thus, we see that the class of grammar-ariven syn-

thesizers to be described have the ability to deal intelli-

gently not only with Oartial programs, but also with

partially-complete grammars, in a natural way.

Finally, we note that ambiguous grammars oresent no

problem for the GOSE. If the inout grammar is amoiguous,

this simply means that there is more than one way to gen-

erate at least one sentential form.

The question that remains to be answered is wnether

grammar-driven synthesizers can be used to synthesize more

interesting constructs than strings (for instance, some data

structure encoding the algorithm representea by the woraJ.

In addition# it is desirable to use a more human-oriented

input code. In the remainder of this chapter, first the

command, and then the synthesis caoabilities will oe

improved. The resulting mecnanisms will inherit the basic

properties of the GOSE, however, which remains our fundamen-

tal model for grammar-driven synthesis.

0. AN IMPROVED GRAMMAR-DRIVEN STRING EDITOR

In this section we improve the Phase Two command mechan-

ism for the GDSE, The R-ARGOT notation is our primary tool

for doing this. ,This notation provides for a concise and

human-oriented set of rules as the arammar definition,

allows automatic expansion of rule names when there is only
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one way for expansion to be done, and provides a framework

for selection of alternative expansion paths based on Keying

the desired alternative by means of a mnemonic Keystroke.

Yet the regularity of the notation allows synthesis to

proceed in a straight-forwara, non-recursive fashion, pri-

marily because the contents of the rule can De accesseo Ov a

finite automaton. These properties are not coincidental,

since the desire to achieve them provided the primary

motivation for restrictinq the ARGOT notation in the way

chosen.

1. Rules and transformations.

me eventually would like to classify every possible

rule name replacement according to some finitely-expressible

scheme. To this end, we distinguish between the terms

rule* and "transformation". For 6NF notation, each Produc-

tion can result in one, ana only one, transformation of a

non-terminal symbol to a string of symbols. For ARGOT and

R-ARGOT notation, in contrast, each rule may express more

than one such permissible transformation. The limited nest-

ing of R-ARGOT operators allows us to list all of the

transformations allowed for an R-ARGOT grammar in a finite

list.

In order to further reduce the set of transforma-

tions possible, we introduce a special class of symools

which are assumed to be distinct from either rule names or

terminal strings, which we will call *e-symbols". They have
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the purpose of serving as Place markers in a sententia)

form, indicating points where optional strings formed

according to a particular transformation may be insertea.

me will use three classes of such symbols, with the notation

Wo(rule name)", "i(rule name)", ana "l(rule name)". The

characters "o"r *i" and "1" will be used to encooe the exact

sort of transformation by which the symbol can be reolaced,

and the rule name argument will allow the mechanism to

access the symbols in the grammar by which they can Oe

replaced. Since their expansion is optional, for output

purposes we may think of all of these symbols as represent-

ing the empty string. uhen the huffer is to be copied to

output, these symbols are simply skipped.

Nith this notation in hand, we examine the four

sorts of R-ARGOT rules: concatenations alternations,

iterations, and list iterations.

Concatenations involve replacement of the rule name

by a sequence of terminal symbols, rule names, and optional

rule names. These elements must occur in order exactly as

specified in the rule. Any optional rule names are con-

verted to the e-symbol Mo(rule name)" when they are encoun-

tered. thus# the rule:

array-type: E packed I "array" "" ranges "I" "of" type.

allows replacement of the rule name carrayb in the buffer by

o(Packed) array ( <ranges> I of <type>

(In this section# we shall delimit rule names in the ouffer
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with angle brackets so tnat they cannot be confused with

terminal strings.) Tf the symbol "o(oackeo)" is never

replaced, this string would oe copieo to the output tape

simply as

array ( <ranges> I of <type>

fie see that a concatenation rule explicitly stands for a

single, invariant transformation. Imolicit in tre existence

of an optional field, however, is an additional transforma-

tion of the form

o(rule name) :> <rule name>

The use of an e-symbol has allowed us to express wnat would

have been one transformation with an indefinite format, as

an indefinitely long (but finite) list of transformations,

each of fixed format. This notational trick will be further

used in the next chapter to make the list of transformations

associated with a grammar even more regular.

Alternation rules are always of the form:

name: { namel : name2 . . . name-n )

and correspond to n transformations:

<name> :> <namel>

<name> z> <name2>

<name> => <name-n>

Iteration rules correspond to two transformations: that per-

formed when the rule name is first replaced, ano that

correspOnding to additional iterations. Thus, a rule of the
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form:

name: + namel

corresponds to the two transformations:

<name> => <namel> i( name

i( name ) => <namel> i( name

List iteration rules similarly consist of two

transformations. A rule of the form:

name: a namel name2 ...

zorresponds to the transformations;

<name> => <namel> 1( name )

l(name)=> <name2> <namel> 1( name )

2. Automacic synthesis.

Havinq listed all possible transformations, we Tay

now determine which of them can be performed automatically.

Given a rule name, the type of rule is effectively comput-

able from the form of the right-hand side of the rule alone.

If the rule is an alternation, the user must be consulted in

order to determine which of the n possible transformations

is required. If the rule is a concatenation, there is only

one possible expansion. If the rule is a simple iteration

or list iteration, the initial transformation is required

and should be automatically performed. It may be recalled

that predefined rule names (such as "ioentifier") )re

allowed in an R-ARGOT grammar to symbolize calls to prede-

fined input scanners. Such rule names do not admit to expan-
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sion by rule, but must be expanded by referral to the prede-

fined scanner which may solicit aate from the user. Mlence,

predefined rules cannot be automatically exoandeo. Che-e is

one other possibility: the rule name may be undefined. In

this case, no expansion of any kind is possible.

Terminal symbols, by definition, cannot be expanaea.

The e-symools all require user attention so also cannot be

automatically expanded.

As a matter of terminology, we may classify symbols

in the buffer as bound# free, or transient.

Bound symbols are those which admit to no further

replacement. Thus, in our system undefined rule names and

terminal symbols are bound.

Free symbols are those which require a decision as

to whether or not they are to be replaced at all, or by what

transformation they are to be replaced. The free symools

are thus names for alternation rules and predefined rules,

as well as the e-symbols.

The remaining symbols can be transformed by one, and

only one, transformation which is not optional. They

represent intermediate steps of a required replacement

sequence, may be automatically replaced without restricting

the range of words which can be formed from the sentential

form currently in the buffert and thus may be reqarded as

"transient" in the sense that they are retained only until

they are recognized and reolaced by their equivalent
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automatically. The transient symbols in the described svs-

tem are names of concatenations, iterationst and list itera-

t ions

Since the expansion of transient symbols can only oe

done in one way, at the beginning of each Phase Too loop we

would like to search the buffer for a transient symoo| and

expand each one found, continuing this orocess until there

all symbols are either free or bound. Unfortunately, for

unrestricted R-ARGOT arammars, there is no guarantee that

this oProcess will terminate. If one can start with a con-

catenation* iterationr or list iteration rule and reach the

same rule by applying a sequence of rules not including any

optional or alternation rule, the described orocess may

never terminate. Therefore, we must restrict the grammar so

that no such cycles exist.

Fortunately, the existence or non-existence of such

cycles can be effectively comouted given an otherwise syn-

* tactically correct R-ARGOT grammar. This restriction is the

only semantic constraint we Place on R-ARGOT grammars for

the remainder of the discussion. The loss in expressive

power is not great. Such cycles correspond to recursive

expressions with no trivial case in 8NF-Oescribed languages,

and once enteredr derive only forms with non-terminals and

never words.

Nith this restriction, which can be enforced Oy

checking the input grammar during Phase Ones we now may
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allow automatic expansion of transient symbols during tne

oeginning of the Phase Two loop Prior to any furtner pro-

cessing with the understanding that such expansion is to oe

performed until no transient symbols remain. Aith the gram-

mar restricted as aescrioed, this process must always ter-

minate. Since the grammar is context-free, the order in

which transient symbols are expanded is of no consequence.

ve will refer to the automatic expansion of all transient

symbols until none remain as "autoscanning" .

The addition of the autoscanning feature relieves

the Phase Two user of the burden of having to order exoan-

sions that are required by the orammar. The orce oaid for

this facility is that only those forms can be produced which

consist entirely of bound and free symbols. In the context

of a Programming language defined by a grammar, the system

will now synthesize as much of the program as is syntacti-

cally deducible from the part of the Program already created

by the user.

As a concrete example, we display the results of

autoscanning the target symbol for the PASCAL grammar listed

in Appendix B:
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Program Odentifier) ( <identifier> l<filelist> ) ;
o(labels)
o(constants)
o(types)
o(variables)
o(subroutines)
begin

<statement>
I(statements)

end.

3. Improved Cursor Control.

The next improvement to be described is a more use-

ful method of cursor placement.

From the analysis above, we see that after autoscan-

ning is performed, the buffer will contain only bound and

free symbols. By definition, the only symbols requiring

Phase Two input data for further expansion are free symbois,

since bound symbols admit to no expansion at all. It fol-

lows that the cursor should always rest on a free symool.

If there are no free symbols, there are no symools left to

expand in the buffer, and the loop may be left, the buffer

copied to the outout tape, and the algorithm terminated. In

general, however, one or more free symools will be left in

the buffer at the end of autoscan. ne wish to allow the

user a means to move the cursor between theme and must also

decide what to do after the symbol indicated by the cursor

has been expanded. It should be clear that cursor movement

never has any effect on either the contents of the buffer

nor on the valid derivations reachable at any point in the

synthesis. The first is true simply because cursor movement
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leaves the buffer unchanged, and the second oecause of the

context-free nature of the expansion operation.

Accordingly, after autoscanning, if there are any

free symbols left, we allow the user to move the cursor oack

and 'orth by entering zero or more cursor control symbols

(represented by - for movement riqht and by "<-" for

movement left).

The only question remaining is how to Position the

cursor initially, and how to reposition it after a symool is

expanded. we assume that after a symbol is expanded, the

buffer is autoscanned aqain to remove any new transient sym-

boll. If the section of the buffer replacing the expanded

symbol now contains one or more free symbols, the cursor is

placed at the leftmost such symbol. Otherwise, it is placed

at the first free symbol in the remaining string of symbols.

If there are none, wraparound takes place ana the cursor is

placed at the first free symbol in the old Substring to the

left. Initiallyp the cursor is placed at the first free

symbol in the buffer.

4. Transformation Selection.

Finally, we address the problem of causing an

optional transformation to be applied, once the cursor has

been positioned as desired by the user.

From the discussions above, the cursor must be rest-

ing on a free symbol, that is, at either a oredefinea rule

name or the rule name for an alternation, or at an e-symbol
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of type o, i or 1. To simplify the command language moael,

the entry of a blank is adopted as the uniform means of

indicating that an exoansion is to take place at the current

cursor position. If the cursor is at a Predefined rule

name, control is then turnea over to the indicated prede-

fined input scanner. If it is at an e-symbolp the aporopri-

ate transformation is made, the result autoscanned, and the

cursor reoositioned for another 1oon through the cycle.

Finally, if the cursor is at the rule name for an alterna-

tion, one of many potential transformations must oe

selected. Another symbol is entered and this is matched to

keystrokes included in the rule body.

Thus, we must extend the R-ARGOT notation to alloN

inclusion of the keystroke for each alternative which will

trigger it. An alternation now looks like:

statement: I 'a' assignment

S'i' if-statement

'w' while-statement

'C case-statement

The symbol 'a' will invoke the transformation

(statement) => <assignment>

the symbol 'w' the transformation

<statement> => <while-statement>

and so on.
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Extensions to this simple system are easy to imple-

nent and desirable. In particular, a string of more than

one character could be allowed 3s Key. Some work has Deen

done in allowing a "fall-through" key, symoolized oy ' "

which invokes the indicated transition upon any symbol which

does not occur anywhere else in the list of alternative

keys, and reapplies the enterea symbol to the next alterna-

tive generated. Such enhancements are not considered

further in the present work. N
Thus, the only data which must be entered during

Phase Two are cursor control commands, which leave the s-rn-

thesized string intact but move the cursor, ana invocations

of transformations, which consist of a single blank, fol-

lowed oy nothinq for e-symbol expansions (lists, iterations,

or optional field inclusion), by a context- depenaent keys-

troke for alternative selection, and by whatever is needed

by the appropriate input scanner for such items as identif-

iers, numbers, and the like.

5. Discussion.

Ae have now enhanced the capabilities of the GDSE on

the Input side to allow string synthesis ariven by a human-

oriented grammar, with a reasonably supple means of cursor

control and transformation selection. The resulting mechan-

ism still has the desirable properties of the GOSE: it can

accept virtually any context-free grammar (we have lost

those which contain irreducible recursions) and generate any
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form derivable under that grammar (some of which are

automatically expanded). It is also still true that the

buffer never contains an incorrect sentential form,.

The mechanism that has been descrioea in this sec-

tion is considerably simpler than that for a parser genera-

tor. This simplicity is the result of allowing interaction

between the user and the synthesizer during the stage when

the grammar of the languaqe is available to the mechanism.

User-provided data is available to guice a true top-down

synthesis of the desired word in the defined language.

The described system is highly useful in its own

right. It could be used, for instance, to prepare programs

for entry into a conventional system with the guarantee that

the orogram was syntactically correct. The compiler used

would not need the abilitv to handle syntactic errors (a

notably difficult design problem). In addition, since the

input grammar is interpreted, the same editor could oe used

for many different languages.

de want to do more, however. In the next section,

we investigate one way to synthesize more comolicated data

structures using the grammar-driven editor we have described

in this section.

E. TREE SYNTHESIS

So far, all of the mechanisms described synthesize

strings. In order to subsume the ideas already develooed
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under the general notion of tree synthesis, we first charac-

terize strinqs as a special sort of tree. Oe then discuss

the notion of parse trees, and generalize it to form the

more oeneral class of derivation trees, of wnich botn string

trees and parse trees are a soecial case. Since trees are a

well-understood data structure, we shall not define them

formally but treat their general properties in an intuitive

fashion. For the remainder of this section we shall assume

that the algorithms necessary to create anu manipulate gen-

eralized (multi-children), ordered trees are freely avail-

able. Such trees consist of a finite number of nodes, each

of which has a finite number of children occurinq in an

ordered sequence.

In addition to having children, we assume that each node

may also contain an indefinite amount of symbolic informa-

tion. In particular, with each node may be associated a

string called its label.

Those nodes of a tree with no children are its leaf

nodes. Since the tree is ordered, its leaf nodes may also

oe ordered into a linear list. me assume that all of the

nodes of a synthesized tree may be examined and accessed for

the information they mav contain.

1. Re-Interpretation of the GOSE.

In all of the work that follows, we use a syn-

thesizer that is formally identical to the GOSE. he shall

call such a mechanism a GDE, for Grammar-Driven Lditor. The



action taken by those steps in the algorithm that actually

interact with the BUFFER are re-interpretea as calls to

tree-manioulation subroutines. The BUFFER is now ccneeived

to contain, not strings of symbols, out aopropriately imple-

mented ordereo trees with laDeleo nodes. Rather than

describing the algorithms involved to create, moadify, and

traverse such structures in detail, we assume that mathemat-

ically Correct subroutines are available to perform tne

needed functions, since methods for implementing trees using

a sequentialiv-addressed, rewritable memory store are well-

known.

In order to re-interpret the imoroved GOSE as a tree

synthesizer in this way, we need routines to initialize the

BUFFER with a tarqet tree (or initial tree), move the cursor

back and forth, and replace a "symbol" with a "string of

symbols" (whatever these terms mean in the new context).

Also, we now need to explicitly identify the orecise means

used to "display" a tree.

Supposing that appropriate routines are availaole,

we wish to argue that the new mechanism, which synthesizes

trees, instead of strings, inherits all of the formal pro-

perties of the original, in the following sense.

The display algorithm in use may be thought of as a

function, do mapping trees into strings. We shall consider

a tree to be a "sentential form" of thp input grammar of

interest if, and only if, its image is a string whicn is a
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sentential form of the qrammar.

Ae wish to compare the operation of the ola and the

new mechanisms, given exactly the same stream of input sym-

bols on the PHASE2 INPUT tape, supposing that the grammar

specifications on the PHASEI INPUT tape are equivalent in

some as yet unspecified sense. The fundamental property

that gives the GDSE all of the features that maKe it an

appropriate synthesizer for sentential forms is that at each

entry to the loop, the BUFFER always contains a correct

form. This property is a consequence of the fact that the

manipulations inside the loop either leave the contents of

the buffer unchanged, or transform one valid form to

another. Since the BUFFER is initialized with a valid form,

by indjction the BUFFER never contains anything out a valid

form upon loop entry.

Oe would like the new mechanism to perform the same

derivation steps# given the same PHASEZ input sequence, as

the old. The display function would then serve as a mor-

phism from the new mechanism to the old, over the operations

defined Oy the possible BUFFER transactions made available

by the algorithm within its basic loop. Thus, if it is true

that, for any given cycle through the loop by the parallel

mechanisms, with identical forms in the two BUFFER5 at the

beginning of the loop (as viewed under the display function

for the new mechanism), and that corresoondinq derivations

are undertaken within the loop, then for every possible
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derivation sequence that can occur under the old mechanism

there will be one, and only one, derivation sequence which

occurs under the new mechanism, ano the product of the new

mechanism, when viewed under the display funclion, will oe

identical to that of the old.

The question of Paramount interest, is under "mat

circumstances will this property, that the contents of ooth

BUFFERs will be display-equivalent for any step in

equivalent machines, be true?

It is well outside of the scope of our research to

provide a complete answer to this question, in the form of a

set of necessary and sufficient constraints so tnat the

desired Property (which we might call "stepwise

equivalence") is true. Rather, we shall provide a aescrip-

tion in general terms of a natural class of re-

interpretation constraints that are merely sufficient.

In the improved GOSE, the PHASE1 INPUT tape con-

tained a finite set of rules, each of which consisted of a

finite set of transformations with one symr, ol on the left-

hand side, and a string of symbols on the right-hand side.

In the re-interpreted synthesizer, each transformation will

consist of a specification calling for the replacement of a

single leaf node, labelled with the symbol on the left-hand

side of the original transformation, with a forest of adja-

cent siblings with leaf nodes labelled with each of the sym-

bols on the riqht-hand side. Such a tree transformation
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soecification will be referred to as a template. "Replace-

ment of a symbol by a string" is now taken to mean the

replacement of a labelled leaf node by the forest of aoia-

cent siblings specified ov the appropriate template.

In order to ensure that the structure in the BUFFER

is always a tree, (since we may allow replacement of a nooe

bv a forest), it is necessary to ensure that the root node

in the BUFFER is never broken uo into a forest. We there-

fore impose .he constraint on the system that the BUFFER be
II

initialized with a tree consisting of a special root node

with one child, labeled with the target symbol. Since only

leaf nodes are ever replaced, no replacement ever turns a

previously internal node into a leaf node (no transforma-

tions have empty right-hand sides). Since the root node is

initially internal, it is never replaced. Hence the struc-

ture in the BUFFER is always a bona fice tree.

The above suppositions are insufficient to obtain

the steowise equivalence property by themselves, since we

have not addressed the display function, which is used to

define what is meant by a tree which is a valia sentential

form.

In the final system to be described, the language

implementer will be given the power both to select a partic-

ular template from all of the valid candidate templates

available, corresponding to the given transformation, and

also influence the display order of the chilaren of a given
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node. The retention of stepwise equivalence depends jointly

on the consistent application of this facility, and it is

our present intention to provide a sufficient condition

which does, in fact, preserve it.

Selection of a single temolate for each transforma-

tion in the original Orammar may be thought of as specifying

a function, mapping transformations into templates. Let us

name this function f.

in the work immediately following, the display algo-

rithm will be very simple. A tree is displayed by listing

the labels for all of its leaf nodes in order. Since the

right-hand side of templates are ordered forests, we may

also speak consistently of applying d to the template:

again, we simply list all of the leaf node labels in order.

The required constraint is simply this: f and d must be

inverse functions on the set of transformations in the gram-

mar and selected templates. That is, each template must

display as the transformalion to which it corresponds.

Finally, movement of the cursor back and forth is to be

interpreted as movement of the cursor from leaf node to leaf

node, as ordered under the display function.

Under these conditions, stepwise equivalence will be

retained by the new mechanism. The fundamental reason for

this is that the display algorithm defined is, itself,

contextefree*. If a given tree is a sentential form,

application of a template to it will yield a tree which is
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also a sentential form. Moreover, the new tree will lisPlav

as the same form as that yielded by the corresponding symbol

replacement aoplea by the string synthesizer. Cursor move-

ment also takes place in oarallel.

Since the new mechanism is steowise equivalent to

the old, it inherits all of the formal properties of the

old. Of course, since the actual contents of the dUFFLR may

be suostantially richer in structure at any qiven time, the

new mechanism may have emergent properties of its own in

addition to those inherited from the GDSE# but such Proper-

ties can be utilized only by using an additional algorithm

to access information that has been hidden in internal nodes

of the tree in the BUFFER.

A more flexible disolay algorithm will be used in

the final system. The implementer will have the power to

permute the display order of the nodes in a template, as

well as to display strings stored with the rule instead of

as labels of a node. The display algorithm retains the

basic Property of providing a context-free display, however,

and the same constraint aoplies to the display and temolate

specifications chosen: each template must, in fact, display

as its corresponding transformation in order for the system

to maintain stepwise equivalence.
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2. Strings as Trees.

me may think of a string as a soecial sort of tree

which has a root node and one child for each symool in the

string. Such a two-level tree we shall call a string tree.

For instance, the string

*if <expression> then <statement> o(else-oart)"

corresponds to the string tree

<root>

if <expression> then <statement> o(else-part)

In order to synthesize string trees with a 6DE, we

initialize the BUFFER with the tree

<root>

<target>

Replacement of a symool by a string of symools is

redefined as the replacement of a leaf node by a set of

adjacent sioling nodes, fitted into the place ot tne

replaced node in the ordered list of leaf nodes. In other

words, the template corresponding to a given transformation

is just an ordered forest of single-node trees.

The resulting GDE, although it ooes synthesize

trees# constitutes a system that is isomorphic to the LibSE.

3. Parse Trees.

The concept of a oarse tree occurs frequently in the

theory of context-free grammars.

55



*e can view parse trees as the structures syn-

thesized by another re-interPretation of the oesic grammar-

driven Synthesizer. The initial tree is taken to be the

sames, two node tree as for the case of string trees. Tne

notion of replacement of a symbol by a string is re-

i'lteroreteo as the adoltion of children to a leaf node,

labeled with all the symbols of the strino. In other words,

templates always take the form of a treeF with the root nooe

labeled with the left-hand side of the transformation, and

each child labeled with the appropriate symbol from the

right-hand side. As usual, the *string* in the bUFFER is

the ordered list of leaf nodes. fhe resulting structure is

considerably richer than that retained in the OUFFER by the

GOSE, since once a node is created, it is never removea.

(more accurately, if it is removed while a leaf node, it is

immediately replaced by a copy of itself.).

4. Comparison of String Trees and Parse Trees.

me take the view that string trees and parse trees

are two special cases of a whole range of trees that can

represent a particular sentential form. This observation

can be justified by comparing the properties of the two

types of trees. A string tree incorporates the minimum

amount of historical information concerning the aerivation

sequence by which it was produced: just enough for further

derivation to correctly proceed. As a result, string trees

are very compact.

5b
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Parse trees, on the other hand, incoroorate a very

large amount of information concerning the derivation

sequence by which they were produced: enougn so that tne

entire sequence can be reconstructed (down to the permuta-

tion of commutative non-terminal selection). As a result,

parse trees are very large. As a concrete example, Figure I

in Apoendix m contains both the parse tree for a trivial

PASCAL program.

Our eventual goal is to provide for grammar-driven

synthesis of directly evaluable trees of reasonable size. A

secondary goal is to do this in such a way that the result-

ing tree can be displayed as a program in the language in

which it was created, but can be evaluated without any addi-

tional syntactical access.

Neither string trees nor parse trees are suitable

constructs for achieving these goals. String trees incor-

porated no structural information ana must be reparsed in

order to access their semantic contents in the correct

order. (This process may even he impossible if the string

tree was synthesized under an ambiguous grammar.) Too much

information has been discarded at the time of synthesis.

On the other hand, parse trees are unreasonably

large. Most of the nodes record syntactical information

that is semantically content-free.
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Our task, therefore, is to find a way to reach some

middle ground, synthesizing trees which contain enough nooes

to retain the desired control structure, but allowing the

elimination of nodes which have no semantic content.

The purpose of the present section is not to provioe

a complete desc-ription of how this is to be done, but to

provide a conceptual range of intermediate possibilities.

It will then be possible to choose the sort of tree to be

synthesized to meet a particular requirement intelligently.

In short, we wish to introduce some "enqineering slack" into

the formal system.

This purpose is realized by introducing the notion

of derivation trees; a general concept of which both parse

and string trees are a special case.

5. Derivation Trees.

One way to characterize the structure of a parse

tree is to note that every parent node in the tree derives

its children in exactly one step. Thus, the relation

between parents and children in the tree is the same as the

":>. relationship.

me consider the set of trees in which each parent

derives its children in zero or more steos; that is, incor-

porates the "*=>" relationship.

Such trees may be constructed from a parse tree in

the following manner:

a. Mark the root and leaf nodes.
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b. Mark zero or more of the remaining nodes.

C. Discard each unmarkea node. Every time a

node is discarded, replace it within the

set of its siblinqs by all of its children,

taken now as adjacent siblings. (rhis

procedure preserves the relative ancestry

of all undiscarded nodes.).

The above procedure assures that every remaining

node derives its new children in zero or more steps. This

can be seen by noting that the hypothesis is true for the

original parse tree, and that if true for a discarded noae

and its children, is true for the node's Parents and its

children durinq each application of the third step. Hence,

it is true for the resulting tree.

In the Procedure just soecified, the selection of

interior nodes to be retained is done non-deterministically.

It is the specification of the particular aqorithm to oe

used for selectinq nodes for retention that we make avail-

able to the system implementer as an engineering choice.

The two simplest algorithms are to retain all interior

nodes, in which case parse trees are produced, or to discard

all interior nodes, in which case string trees are Produced.

the trees produced by the procedure just described

we call generalized derivation trees. Our goal, however, is

not to produce a full parse tree and only then to prune it,
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Out to synthesize a pruned derivation tree directly as we go

a I ong.

This desire sugqests that we apply a particular syn-

thesis uniformally, in the sense that for each transforma-

tion implicit in the R-ARGOT grammar there be associated

one, and only one, synthesis action. This suggestion is not

quite a necessary implication: one could conceive of some

history or context-dependent algorithm for selecting one of

several oredefined synthesis actions associated witn a

transformation. In fact, such "intelligent" systems are an

interesting subject for future research.

But if the simpler orotocol is a0optedr we ootain a

sub-class of derivation trees, which we call derivation

trees constructed by rule. Both parse trees and string

trees are also members of this class. Hereafter, the term

*derivation tree" will oe understood in this restricted

sense.

rhe association of one, and only one template, with

each transformation is very clearly an embodiment of this

idea. The GDE previously described is thus a mechanism

capable of synthesizing any class of uniform derivation

trees desired for a given grammar in R-ARGUT.

In essence, the next chapter represents the selec-

tion of further constraints on the template formats to be

associated with each type of transformation, in such a way

that our design goals are achelvec. The trees produced
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under the set of orotocols are a particular sort of deriva-

tion tree constructed oy rule, which we shall call hereafter

abstract syntax trees. This name is adopted from the ideas

contained in [McKeenan 19701 as representing an intermediate

stage in the translation of some Program in which a parse

tree has had its syntax-dependent, semantically void inte-

rior nodes Pruned away.

o. Elimination of Terminal Strings in Derivation Trees.

An inspection of parse trees such as the one

displayed in Figure I suggests three general classes of

nodes for elimination: those representing a series of pro-

duction steps needed to fill a hiqh-level slot with a low-

level construct (so-called "empty productions"); those

encoding options available but not so far taken (e-symools);

and those representing keywords and punctuation.

As the next chapter shows, selection of appropriate

template protocols allows removal of nodes representing

empty productions. It is our belief that nooes of the

second type can also be eliminated by appropriate template

selection and context-sensitive computation to compute the

existence of a "virtual" option.

Ae now investigate a methodology for eliminating

most nodes reQuired to hold terminal strings.

me first make the observation that most such nodes

are semantically content-free. An examination of the k-

ARGOT notation will show that terminal symbols can only be
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added to a synthesis in one of two ways; by means of a con-

catenation or list-iteration transformation, or by means of

a oreoefinea (autoparsed) rule name expansion. In the

second case, the included string may well be meaningful,

e.g. if it is an identifier or the like. In the former

case, however, since the required terminal string cannot be

an optional field, there is no choice as to whether tne

strinq can or cannot be included. If such a choice existed,

it must have been via an earlier option or alternative

selection, and by the template Protocols specified in tne

next chapterp this selection is already encoded into the

structure of the tree. There is thus no reason to ado a

node to the tree simply to represent an invariant field.

On the other hand, in order to be usable we must be

able to display the string as if it were a node in the tree.

The solution to this quandary is to make provision for com-

putinq the location and contents of such virtual fields when

the need arises. This can be done, provided that list and

concatenation rule templates always have a sinqle head node

which can be associated with the specific rule from which

they were derived in some way (either by inserting a refer-

ence to the rule into the node, or computing the rule trom

context), If the contents of the virtual fields associated

with the rule are then stored with the rule, we can avoid

repeating these strings throughout the derivation tree.
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These ideas are more concretely discussed in the

protocols for template construction in the next chapter.

F. COMPARISUN OF GRAMMAR-UTILIZATION TECHNOLOIES

It is approoriate at this point to step back and place

the system of grammar utilization described in this cnapter

within the range of currently available technologies for

grammar utilization. we shall compare this system with the

two common Parsinq techniques: bottom-up and too-down Pars-

ing. All three of these techniques may be thought of as

producing as output derivation trees.

It should be recognized that the tree Produced by a

parser in contemporary translation systems is usually "vir-

tual". The parser emits a series of syntax-directed action

commands which may be thought of as the sequential represen-

tation of a post-order traversal of a derivation tree. The

*back end" of the system may be thought of as traversing

behind the parser, destroving nodes as quickly as tney are

built.

Both of the parsing techniques are designed to proceed

automatically, that is, without any human intervention. The

grammar-driven synthesizer, in comparison, is inherently

interactive. This property is both an advantage and a

disadvantage, in that the synthesizer utilizes interaction

to attain desirable goals, but cannot be implemented without

interactive devices being available.
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[he need for the oarser-oriented techniques to proceed

automatically olaces a set of mathematical constraints on I
the grammars usaole by such systems. The grammar-driven

synthesizer is capable of utilizing almost any context-free

grammar; a capability that allows the language aesigner to

optimize the grammar selected for realizing some orogramminq

language towards a set of semantically natural rules which

will be easy for the human user to understand3.

[he parser-oased systems are essentially decoders,

translating a valid word in the defined language into a more

comalicated, but equivalent, structure. inherent in this
L

process is the requirement for the user to use some other

system, such as a Keypunch or text editor, to formulate a

valid input word in sequential form; a notoriously error-

prone and tedious process. in contrast, the grammar-Oriven

synthesizer allows the user to create the desired tree

structure directly and with no possibility of syntactic

error (since such errors are simply rejected immediately).

Finally, we note that both parsing techniques synthesize

the output tree from the bottom up. The grammar-driven syn-

thesizer follows a true top-down synthesis: thus, the

partially-complete structure is completely well-structured

so far as it goes. The system is for this reason well-

suited as a base for dealing with partially complete pro-

grams.
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I1. CONCEPTUAL rESIGN FOR GDE

A. INTRODUCTION

In this chaoter a conceptual design for a Grammar

Directed Editor is develooed within the framework oefined in

Chaoter IT.

The mathematical model oroviaes a large framework in

which to design a Grammar Directed Editor, subiect to the

following restrictions:

1. Grammar rules are limited to the concatenation,

alternation, iteration, list, predefined, and undefined

rules in the forms specified by the R-ARGOT notation.

2. The temolates associated with these grammar rules

may consist of arbitrary forests of siblinqs, the leaves of

which must be labelled in accordance with the transforma-

tions summarized in Figure 2.

3. The temolates for list and concatenation rules which

include terminal symbols must create head nodes which retain

or refer to those terminal symbols for display,

A Grammar Directed Editor constructed in accordance

with these restrictions will produce a derivation tree whose

leaves and terminal symbols, retained in heaa nodes, are

dlsolayable as a valid derivation of the inout orammar.

The following design restrictions and goals serve as a

basis for limitinq the very general nature of the possible
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templates to a set of generic templates which define the

Permissible transformations available for the construction

of an Abstract Syntax Tree (AST):

1. The AST should contain the minimum number of nodes

consistent with the retention of all necessary semantic and

schematic information.

2. The structure of the AST should admit efficient

editing alqorithms, in Particular for append, delete, and

insert functions.

3. The AST should not only be an evaluable structure,

but further it should require no *preorocessing" between

editing and evaluation operations.

4. The generic transformation template structure should

be such that the creation of soecific templates for a qiven

grammar can be automated over the simplest Possible inout

data, perhaps as simple as a grammar in a suitable notation.

The methodoloqy employed in the design orocess described

in the following section is to apply, working within the

constraints which the mathematical moodel sungests, such

further constraints and definitions as may be necessary ti

develop generic templates for each transformation which

realize the design goals. In section C, a method for

disolayinq the AST is developed which is consistent with the

generic templates as well as with the requirement that the

valid derivation which the AST reoresents oe displayable as

such. Section 0 introduces the notion of a Lanquage

664.



Definition, wherein an R-ARGOT grammar is translated into an

ordered collection of transformation templates and displav

schemas which serves as the basis for the construction and

aisolay of an AST.

8. TRANSFORMATIONS

1. 0oerators and Rulenames

Figure 2 is the result of precisely defining the

leaves oroduced by each of the transformations defined in

Chaoter I.

A simole change in notation Produces Figure 3,

wherein every rulename in a transformation is associated

with an ooerator to form a two-oart label, as follows:

<r> = NTr

copt(r) = COPTer

iopt(r) = IOPTor

loot(r) = LOPT,r

pdf(p) = POF(p),D

where r is any grammar rulename and p is any predefined

rulename. The first part of a label, the ooerator, will

guide future transformations. The second part, the

rulename, serves as a reference to that section of the

lanquage-specific data base containing the information

required for oerforming transformations or display. In

other words, labels may be thouqht of as a self-modifying

'orogram* for the Grammar Directed Editor stored in the
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hierarchical AST structure by previous versions of the pro-

gram, encoding all of the information necessary for suose-

quent modifications or display of the structure.

Note that as a result of the notational convention

adopted here that the set of possible labels is finite over

a finite set of grammar rules and, therefore, the set Of

temolates required for such a grammar is also finite.

Further, the tyoe of transformation which may be applied to

a given node is determined entirely by the operator and rule

type association stored within that node.

The alternation and predefined transformations

present a problem, however: although the "NT" opcode is

usually stored in transient nodes, these two particular

trans 4 ormations must be stored in free nodes. the alterna-

tion reauires that the user select one of the possible

alternatives, and the oredefined functions require that the

user input a string which they then process. This irregu-

larity is resolved by the introduction of two new operators

ALT and TERM and the following oairs of transformations:

NT,a => ALT,a

ALT,a : { NT,rl ... NT,rn I

NT,o => TERM,p

TERM,p => PDF(p),p

The operators "ALT" and "TERM" may be thought of as logi-

cs)ly equivalent to "NT", but as explicitly labelling (for

display ourposes) the nodes as free (for synthesis
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purposes). Figure 4 reflects these modifications to tne

general transformation table.

The introduction of the two new labels ALTa and

TERM,o, while not altering the leaves produced by the oriqi-

nal transformations and thus not violating the validity of

the mathematical model's results to systems based on this

extension, orovide the followina henefits:

a. Thi format for tne five defined tyoes of tem-

plate sets is more regular. At least two transformations

are associated with each rule type. The first of these

transformations is, in every case, a required transforma-

tion. The second and following transformations require some

form of interaction with the user.

b. Every node whose label has an "NT" operator may

be automatically exoanded during the autoscan process.

Thus, after autoscan, the only leaves whose labels contain

the "NT" operator will be those corresponding to undefined

rules.

c. Since for every unioue label there is one and

only one transformation possible, no contextual information

need be extracted from the AST in order to select and per-

form the correct transformation. This simplifies the tasks

both of lanquage implementation as well as AST formation

since production and invokation of a transformation template

is independent of any AST contextual considerations.
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2. Transformation Restrictions

The transformations as discussed so far define only

the leaves of a possible forest of siblinqs which are to

replace a Particular node of the AST. ae now turn our

attention to designinq the interior structure, if any, of

the forests generated by the transformation templates. In

the absence of other design goals or restrictions, the driv-

ing motivation in determining the forest structure is to

obtain as much simolicity and economy of soace as Possible.

These goals must be balanced with the necessity to retain

semantic or schematic information to preserve the valid

derivation oroperty, as well as to retain sufficient struc-

tural information so that insertion and deletion editing

functions may be convenient for the user as well as effi-

cient algorithmically. The requirement to be able to delete

synthesized subtrees turns out to constrain the template

structures such that the other qoals are also met.

In order to recover gracefully from erroneously con-

structed Portions of the AST, the user Should have the caoa-

Oility to delete any node in the AST, which, as for any

hierarchical structure, inevitably involves the ability to

delete any subtree. The valid derivation oroperty of the

AST requires that deletion of a subtree from an AST be real-

ized as the replacement of the entire subtree by a node

which can validly derive that subtree and which also forms a

valid derivation with the remainder of the AST. The choice
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of the transformation to be applied to a node in the AST is

based solely on the information contained in the node itself

and is completely independent of the node's context. There-

fore* deletion of a subtree must be equivalent to reolace-

ment of that subtree by a node witn the same label, that is,

the same operator and rulename, which the node which was

expanded to form the deleted subtree contained when the node

was oriainally created. The constraints orovided by the

abstract model of Chaoter II are not sufficient to guarantee

that this can be consistently and efficiently accomplished.

For example, consider a grammar which has only concatenation

rules, each of which is entirely either nonterminal symools

or terminal symbols. Since the model allows the definition

of templates for concatenation rules which have no terminal

symbols without a head node, the tree derived from such a

grammar could be a string tree, containing no information

for reconstructing a node being considered for deletion.

The only action possible for a deletion algorithm in this

case would be to delete the entire tree. However, consider

the effect of the following proposed restrictions:

a. All immediate children of a (necessarily pound)

node must be created by the transformations of the rule ov

which their father was bound.

b. When a node is bound, the rule whose transforma-

tion bound the node is Permanently recorded in the node.
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c. A given transformation may generate two or more

childless sibiinos, or a subtree of the current node, but

not ooth.

d. If a subtree is created by a transformation, it

is limited to at most a single generation of children and

may consist of a single node.

Given these restrictions, the rule (and therefore,

at worst, a choice between two transformation temolates)

which originally created any given node in the AST can be

identified by examining its father. Computation on the

father rule temolates allows retrieval of the uniQue node

from which the subtree to be deleted was formed. This

unioueness is further discussed below.

3. Transformation Templates

Given the restrictions developed in the previous

section, we are prepared to define the forests oroauced ov

each of the eleven transformations. The notation utilized

in the transformation templates below is defined in Appendix

C.

a. Concatenation

Rule:

C: x 12...n , xk I (rk ""rk"I tk )
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Template:

headoo,c ( M { NTrk if xk rk

COPTrk if xk = "["rk"l"

... ) if for some k,

NT,c => xK = ( rk "t"rk"i"

headopc if for all ke xk in T

headoo = HEAD : oredefined function I

There are six cases to be considered in the

transformation to be applied to the label NT,c:

nonterminals terminals comment

Case 1: 0 NO undefined rule

Case 2: 1 NO useless Production

Case 3: >1 NO head reouired by delete

Case 4: 0 YES terminals only

Case 5: 1 YES head reouired Oy model

Case 6: >1 YES mead required by model

Case I corresponds to the undefined rule wherein

no rlghthand side of the rule exists. The undefined rule

transformation is discussed below.

In cases 3, 5, and 6 it is required that a head

node be created, in cases 5 and 6 by the mathematical model

for the retention of terminal information and in all cases

by the restrictions defined for the deletion aloorithms. In

each case the head node replaces the nonterminal under

transformation and the nonterminal and/or optional :hiliren
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are realized as the immediate children of the head node.

In case 4 a head node retaining the terminal

information replaces the nonterminal beinq transformed.

Since there are no nonterminals in the grammar rule for

which this form of this transformation is utilized, no chil-

dren are created. Note that this node is bound since it is

transformed into a node which is not one of tne label forms

for which transformations are defined; in fact, this is the

only bound leaf node form generated outside the realm of

predefined functions.

Case 2 Is the useless production. vse could,

without violatinq any of the restrictions thus far imposed,

define this case of this transformation as a single node

replacement, i.e., as NT,c => NT,r, thus avoiainq the crea-

tion of a head node carrying no information. However, we

see the useless Production as a very rare and usuallv

unnecessary occurrence which does not justify the increased

algorithmic Complexity reouired for its detection. There-

forer it is treated in the same manner as cases 3, 5, and 6.

Implicit Template:

COPTor =3 NT,r

This label must be accompanied by some form of

user attention in order that the transformation be invoked,

the nature of which is discussed in the next section.

Assuming for the moment that the user has elected to take
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the ootion, the transformation applied is a sinole node

replacement wherein the operator COPT is overwritten with

NT, and the rulename remains unchanqed.

Note that the rulename in the COPT label may oe

any of the six rule types, including undefined, which raises

the question of where to store the template for this

transformation. The solution is to make this transformation

implicit, that ist to apply the transformation without an

explicit template being stored in the grammatical data base.

This may be done since the transformation is invariant over

all rules in any grammar, deoendinq only on the requisite

user attention and the COPT operator.

b. Alternation

Rule:

a : f" ri "I" r2 "" ... " rn

Template 1:

NTa => ALTa

The transformation for the label NT,a is a sin-

gle node replacement; the operator NT is replaced with ALT,

and the rulename remains unchanged.

Template 2:
NTrk if user input valid

ALT,a =-
ALT,a otherwise

This label must be accompanied by user inout

indicating which of the alternatives is desired; suppose for

the moment it is the kth. The transformation aoplied is a
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single node replacement wherein the operator ALT becomes NT

and the alternation rulename is overwritten with the

rulename of the kth alternative. If the user input does not

correspond to any of the alternatives, the transformation

returns the node unchanged.

c. Iteration

Rule:

i 0+0 r

Temalate 1:

NT, i => ITERoi ( NTr ; IUPT,i )

While not required by the mathematical model, a

heed node is created by the transformation for the label

NTi to fulfill the deletion reouirements. The two leaves

specified by the model are formed as the immediate children

of the head node in which the ooerator NT was replaced by

ITER. A side effect of the invariant creation of a head

node is that, while inconsistent with the model, terminal

information apolicable to every reel child in the iteration

sibling strinap as opposed to the trailing IOPT child, could

be included in the iteration rule if an appropriate exten-

sion wpre made to the R-ARGOT notation.

Temolate 2:

IOPT#l z) NT,r ; TOPTri

Triggered by the approoriate user inout, the

transformation for the label IOPTi replaces the node with a

Th
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pair of siolings which are the leaves required by the model.

Note that the rulename in the IOPT laoel is the same

rulename which bound its father. Thus, all children of the

ITER node, whether formed when the ITER node was bound or

suosequently when the IOPT node was expanded, are formed by

one of the transformations under the rulename stored in the

ITER node, as required.

d. List

Rule:

I : *X" rt x ... " ( r2 : "("r2")" : t

Template 1:

NT,? =I LISTl C NT~rl ; LOPT,) )

The transformation for the label NT,? replaces

the operator NT with the operator LIST, forminq a head node

as required by the model in the case the second riqht-hand-

side argument of the grammar rule is a nonterminal and in

every case bv the deletion requirements. The required

leaves form a sibling string under the LIST node.

Template 2:

NTPr2 ; NTPrI ; LOPT,? if x = r2

LOPT, : COPT,r2 ; NT,rl ; LfYT, if x = "[r2*1"

NTerl ; LOPT,? if x = t

The transformation for this label has three

forms, as indicated, for the three possible cases. In all

cases, the LOPT node beinq transformed is replaced with a
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sibling string as shown, the nodes ot whicn are the required

leaves. As in the TOPT transformationt the LOPT label car-

ries the same rulename as its father so that al children

created under a LIST head node are derived from a common

parent rule.

e. Predefined

Rule:

p : pdf

Temolate 1:

NT,o Z> TERMo

The transformation for the label NTp is a sin-

gle node reolacement, the NT operator being overwritten with

TERM and the rulename remaining unchanged.

Temolate 2:

POF(pstrlng),p if PDF(p,string) valid

TERM,o =2

TERM,p otherwise

The label TERM,p must be accompaniea by

appropriate user input before the transformation is aoolied.

The exact nature of the transformation apolied is deoendent

uoon the oredefined rulename, but certain characteristics of

the transformation may be generalized. The transformation

results in either a single node replacement or a possibly

many-leveled skubtree; it may not generate siblinas or a

forest of siblings. As regards the deletion restrictions,
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the subtree created by a Predefined function is considered a

single unit for editing purnoses that is not suoject to

internal deletions or insertions. System Provided prede-

fined rules, if the inout is valid# invariably result in a

bound node or subtree of bound nodes; a free node in the

subtree would imply knowledge of language-specific grammar

rules which no general Puroose predefined function could

have. User-supplied Predefined functions, allowable as a

language-specific extension to the system, may admit such

free nodes; however# th* language imPlementor is responsible

for ensuring the syntactic integrity of the AST is preserved

over such transformations.

If the input accompanying the label is rejected

by the Predefined function, the transformation is null and

the node is unchanged.

f. Undefined

Implicit Template:

NTu :3 NT,u

The undefined label underqoes a null, implicit

transformation.

4. User Attention

Of the eleven transformations, six define the action

to be taken for the six possible nonterminal labels. The

remaining five, the second transformation template for each

of the five defined rule tyaes, all require some form of
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user attention orior to the apolication of the specified

template. The form of user attention reouirea is dependent

upon the operator but generally may be characterized as con-

sisting of two parts: an indication that the user wishes to

direct attention to the current node, ana a Oossioly empty

character string utilized by the transformation as an inout

parameter. The five transformations reouirina user atten-

tion fall into three classes, as follows:

a. IOPTo COPT, LOPT

The three optional operators require simply that

the user elect to expand the optional node. Thus directing

attention to an optional node is sufficient for application

of the template and the character string parameter is not

required.

b. ALT

The Alternation operator requires that the userr

after directing attention to the alternation node, orovide a

character to be utilized in determining which of the possi-

ble alternatives is desired.

c. TERM

The TERM operator requires, in addition to the

user's attention, a character strinq for processing by the

opredefined rule associated with the node.

The exact format of the user attention Parameter

is implementation dependent, but is summarized abstractly as

follows, by operator:
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ooerator user attention

COPT <elect optinn>

IOPT <elect option>

LOPT <elect option>

ALT cchar>

TERM <string>

5. Deletion and Insertion

Earlier it was asserted that templates defined in

accordance with an appropriate set of restrictions would

allow deletion of any subtree from the AST using only the

rulename of the subtree's parent node, ie now verify that

assertion based on the templates as defined above.

Of the six rule types, three may be excluded from

consideration as Potential parents of noaes to be deleted.

Undefined rules never form children and thus are never

referenced for deletion. Predefined rules are defined to

create subtrees which can be edited only as complete units.

Alternation rulenames never appear in bound nodes of the AST

since the alternation rulename in a free node is overwritten

with the rulename of the alternative rule chosen. Thus only

concatenation, iteration, and list rules remain as ootential

parents of subtrees whose deletion is desired. The parent's

rule type in each of these three cases may be positively

identified by the parent node's operator: if the operator is

ITER, the the parent rule is an iteration; if LIST, then it

is a list rule; and if otherwise (either HEAD or a

81



predefined function), then the Parent rule is a concatena-

tion. The templates for these three rule types allow

recreation of the original label which existed wnen the root

node of the subtree to be deleted was initially created.

A parent concatenation rule, upon initial expansion,

creates a fixed number of children, all of the forms NT,r

and COPT,r. By inspection, no transformation or sequence of

transformations on these labels for any of the six rule

types may create additional siblings under the parent con-

catenation rule nor may they reorder the subtrees initially

created. Thus the initial fixed number apd order of chil-

dren created remains constant. Suppose some subtree, say

the ith, under the concatenation rule parent is selected for

deletion. The siblinq which was originally created by the

concatenation rule as its ith child may be reconstructed by

traversfng the concatenation rule template until the ith

sibling list element is encountered. This siblinq list ele-

ment contains the information by which the node reolacing

the subtree to be deleted may have its operator and rulename

fields reinitialized. Deletion of a subtree under an itera-

tion ru parent node is made possible by the consistent

manner in which the two iteration rule templates create

children of the parent node. The first child is created by

the first template and the deletion process for the first

suotree is similar to concatenation deletion. Subsequent

suotrees, uo to the trailing IOPTi node, are created by the
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second template and the information necessary to recreate

any lahel may be retrieved from the first siblina list ele-

ment of that template. The IOPTi child is invariant in

location and form and is not subject to deletion.

Deletion of the first subtree under a list rule

parent is handled in the same manner as the first subtree

under an iteration Parent. Subsequent subtrees, up to the

LOPT,l node, are also similar to iteration rule suotrees

except that they may have been created in oairs. Examina-

tion of the list rule's second template will reveal whether

subtrees after the first must be treated in pairs or may be

handled singly. In either event, the information necessary

to recreate any given child is available in the template.

The LOPT,l child is not subject to deletion.

So far deletion has been concerned only with

Wunparsinq* an incorrectly formed subtree to a single ances-

tor node so that the subtree may be correctly reconstructed.

For subtrees of concatenation rules this is the only form of

deletion which retains the valid derivation property. SuD-

trees of iteration rules, however, are all derived from the

same label and thus are all syntactically equivalent when

viewed from their root. Further, the only restriction on

the number of iteration rule node subtrees is that there

must be at least one in addition to the IOPT node. Thus,

deletion of an iteration rule subtree, excepting throughout

the trailing IOPT node, could be realized as the actual
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physical deletion of the entire suotree including the root

node, as lonq as at least one subtree remains. As a corol-

larv, a node oroperly labelled in accordance with the itera-

tion parent rule could be inserted in front of any node in

the iteration siOling strinq without vio)atina the valid

derivation property. The insertion procedure requires the

same information as deletion, the rule tyoe and rulename of

the Parent node, in order to construct an aporopriately

labelled node for insertion into an existing iteration node

sibling strinq.

List rules whose second argument is a terminal sym-

bol form AST structures eauivalent to iteration constructs

and thus ohysical deletion (as opposed to unparsing to a

single node) as well as insertion are valid operations.

List rules in general Present a more complicated oroblem in

that subtrees after the first are formed in pairs. However,

extending the argument concerning syntactic equivalence of

subtrees to Pairs of subtrees is straiqhtforward and allows

physical deletion and insertion to apply to list rule suO-

trees as well.

In summary, deletion is realized as a replacement

operation for all concatenation rule subtrees and for soli-

tary iteration and list rule subtrees, wherein the subtreo

to be deleted is replaced by a single node which is a recon-

struction of the subtree's initial state. Under iteration

and list parents where other subtrees exist, deletion
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results in the Physical removal of the suotree or subtree

Pair; reconstruction may be accomplished at the same or some

other location under the Parent by a separate insertion

operation.

C. DISPLAY SCHE4AS

Thus far a method of constructing an AST has been

developed utilizing transformations to expand nodes in

accordance with a set of templates sorted bv rulename such

that the AST represents a valid derivation of the associated

grammar. Attention is now focused on disolayinq the AST; in

particular* a method is developed in this section by which

the valid derivation of the grammar which the AST represents

may be displayed.

Display of the AST is the result of a generalized

inorder traversal, beginning with the root node, with termi-

nal and nonterminal symbols being displayed in accordance

with schemas associated with each label. The display need

not be strictly Preorder since Provision is made to display

subtrees under a Parent node in any order as directed by the

parent's rule schema. This capability is provided to allow

for the case where the evaluator may have to access the sub-

trees in a different order than that implied by the syntax

of the target language.

Schemas are referenced by the rulename associated with

each bound and free node in a manner similar to the
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referencing of templates so that the display associatea with

a subtree is Independent of the context of that subtree.

The valid derivation need not be disolayea in its

entirety. For examole, the means is provides to display all

undefined nontermina)s as they occur in the AST as part of

the valid derivation. If the languaqe implementor chooses,

however, he may elect to not display any of the undefined

nonterminals which appear in a partial grammar he is imple-

menting in its incomplete state.

In the following two sections, first the schema language

is defined and then the formation of schemas for each of the

ruletypes is developed.

1. Schema Language

There are three types of display information pro-

vided for in the schema language: format control, literal

strings, and subtree indicators. A system for handling com-

ments has not yet been developed. Howevepr it is envisioned

as an extension to the schema language and not as part of

the grammar for the target language.

Format control information is encoaed mneumonically

in the double capital-letter strings "NL", "TB", and "UT",

interpreted respectively as "newline", "tao", and "untab".

UT simply causes a variable, "tabcount", to be decremented.

T8 causes a tab control character to be transmitted to the

outOut device and increments "tabcount". NL causes a new-

line character and "tabcount" tabs to be transmitted to the
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output device. Format control information is Provided for

readability only.

Literal strings are arbitrary character strinqs,

delimited by double quotes# that are transmitted directly to

the output device. Literal strings provide the mechanism

for the display of terminal and nonterminal symbols in tne

derivation represented by the AST.

A subtree indicator, denoted by a dollar sign fol-

lowed by an integer interpreted as a child number, directs

that that subtree be entirely displayed prior to resumption

of display of the current schema. An optional display

field, consisting of an eauals sion followed by a literal

string, may accompany the subtree indicator to orovide the

means for displaying undefined nonterminals, the three

optionals, and TERM nodes, as described in the followinq

paragraphs.

An undefined nonterminal may apoear for a variety of

reasons, the most common being as a Placeholder in a partial

grammar. Since the rule for the nonterminal does not exist,

there can be no schema, so the optional field, if Provided,

is invariably utilized. If not provided, nothinq will be

displayed for the undefined nonterminal.

The three optional nodes, CnPT, IUPT* and LOPT,

require special handling since there is nothing inherently

"optional* about a rule. Rathere t e optional nodes are

placeholders to indicate to the user the possibility that
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the rule specified may be invoked, if the user so chooses,

but also may he left uninvoked in a "complete" AST. Since

it is the father rule which holds the information that this

rule invocation may be an as Yet unelected option, the

father rule schem, contains the information, in the form of

an optional display field, to display the nooe accordingly.

The Predefined rule referenced by a TERM node is in

general a languaqe-independent system routine. As such, it

has no knowledge of the nonterminal name which it, when

invoked by the user on a stringp is replacing in the valid

derivation. Since the father rule does have this informa-

tion, the father rule schema contains the optional display

field necessary to properly display, within the context of

the grammar, the rulename which the predefined rule will

replace. In other words# this facility allows the language

implementor to rename the predefined rule for display pur-

poses.

When an option has been elected or a TERM node

predefined rule has produced a bound node, both of which are

displayable in their own right, the optional field associ-

ated with the subtree indicator is no longer necessary and

will be ignored by the display alaorithm. While these nodes

remain free, however, the optional disolay field Provides

the user the information he needs to expand these nodes, as

well as a logical symbol under which the GDE may Place the

cursor to indicate the current node.
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A subtree indicator which may reference one of the

three node tyoes discussed above must, in order that a valid

derivation he disolayed, include an appropriate optional

display field. The imolementor may, of course, omit such a

disolay field in which case nothing will be disolaved for

the node. In the case of an undefined nonterm'nal this may

be the most pleasing result; in the case of ontionals and

TERM nodes such a display will not accurately reflect all

free nodes in the AST that may be of interest to the user.

The ommission of such an ootional display field may be

regarded under normal circumstances as a mistake in the

language definition.

2. Rule-Specific Schemas

Construction of schemes is a straight-forward pro-

cess when keyed to rule-type since the schema subtree indi-

cators and literal strings must conform to both the R-ARGOT

grammar rule definition and to the transformation templates

associated with the rule definition in a consistent way. In

the schema constructions which follow, format control infor-

mation is ignored, but generally may be inserted into a

scheme any olace that a terminal symbol is allowed.

a. Concatenation

Rule:

C : xl x2 ... in , xk ( rk so "j"rk"j" tk )
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Schema:

cs : sl s2 ... sn

"tk" if xk tK

$j="[rulenamel" if child j is optional

sk = Sj="<rulename>" if child j is Predefined

Sj="(rulename)" if child j is undefined

otherwise

A single schema is required for the concatena-

tion rule and may be constructed# if all nonterminals are

realized as children in the order they are listed in the R-

ARGOT rulep as follows:

Reading the R-ARGOT concatenation rule from left to

rightp for each symbol xk:

if xk is a terminal symbolp copy it to

the schema as a literal strinq;

if xk is the jth nonterminal and is optional,

write S:="rulenamel" to the schema;

if xk is the jth nonterminal and is predefined,

write $j=*<rulename>" to the schema;

if xk is the Ith nonterminal and is unaefinea,

write Sj"=(rulename)* to the schema.

if xk is the jth nonterminal symool, and is

not optional, undefined, or a predefined

rule, write SJ to the schema;
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This aloorithm for the construction of a con-

catenation schema is for the displav of the entire valid

derivation. Tf disolay of an unaefinea nonterminal, #or

example, is not desired, the subtree inaicator for that

child could either be written without the optional display

field or be omitted entirely. mhile this alqorithm assumes

that the implementor wrote the concatenation template such

that the children correspond in order to tne nonterminals in

the rule, this need not be the case. The schema must Know

the orderr however, so that the disolay is an accurate

representation of the derivation obtained from the grammar.

As an examole of each of the oossibilities

listed above, consider the concatenation rule

simole : "program" name decls [externs] block ena"

where the nonterminal "name" refers to a oredefined func-

tion, "decls" is an undefined nonterminal, and "block" is a

well defined, non-ootional, non-predefined nonterminal. The

schema for this rule, without any format control characters,

would be

norogram"S|1=<name>S2=(decls)"$3="externs"$"end"

b. Alternation

Rule:

a : (" charl:xl "" char2:x2 "" ... "1" charn:xn ")"

Schemas:

ask : "lalternation rulenamel"

as2 : "{ charl:rulenamel ,.. charn:rulenamen "
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Since the transformations defined for an alter-

nation rule are both single node replacements, the second

one of which results in the alternation rulename being

overwritten, it is clear that no semantic or schematic

information required in a sentence in the languaqe, as

ooposed to a valid derivation in general, may be associated

with the schema for an alternation rule since once the

alternative choice is made by the user, the rulename and

thus access to the schema is no longer present in the AST.

Thus the schema for an alternation rule could have been

implemented as a subtree indicator optional field. 4e

choose to provide a pair of explicit display schemas associ-

ated with the alternation rulename, however, to implement a

'help" mechanism. The first display schema consists simply

of a literal string comoosed of the alternation rulename in

curly brackets and is the schema normally used to display

the node. The second, optional at user reQuest, is again

simply a literal string but with the alternative rules and

their associated keystrokes displayed in curly brackets.

For example, the following alternation rule

statement : { a:assignment 1 c:conditional 1 b:block I

would be displayed normally by the schema

'( statement )"

or, if the user desired to see the alternatives and their

keystrokes, by

"4 a:assignment 1 c:conditional : b:block J"
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C. Iteration

Rule:

i : 't" r

Schemas:

is I : St

is2 : *[iteration rulenamel"

The iteration (as well as the list) rules differ

from concatenation in that they may nave an indefinite

number of children requirins display. Since no terminals

are allowed in an R-ARGOT iteration rule and since every

child is formed independently of the others in the sibling

strino, display of an iteration# while involving some work

on the oart of the displav algorithm to traverse all of the

subtrees one at a time, requires a oair of very simple sche-

mas. The first is simoly a subtree indicator used for

display of all subtrees except the last. The subtree indica-

tor may include an optional field for undefined and orede-

fined rule displav; from the transformation template defini-

tions it is apparent that no child of an iteration node can

be a concatenation optional node. The second schema is used

for disolay of the last child, invariably an ItPT node.

d. List

Rule:

1 : '" ri x s... x ( w2 1""r2 " 1 t )
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Schemas:

Is : St

S152 if X = -2

is2 : S1="rulename2l"$2 if x

"t"S1 if x t

Is3 : "(list rulenamel"

The list rule requires three schemas in order to

Properly display the unique format the list structure con-

veys. Like the iteration rule# the list may have an inde-

finite number of suotrees; however, R-ARGUT allows the

second argument to be a terminal symbol. without this

facility the inclusion of the list rule type is hardly jus-

tified since the most usual use of the construct is to

separate grammatical entities with some punctuation mark.

The first schema is used for disolay of the

first child. Subsequent children or pairs of children,

depending on the specific list rule, up to the last in the

sibling string, are displayed by the second schema. The

display algorithm must keep track of which children it has

displayed in traversing the list in order that this label

schema structure display the sequence of subtrees correctly.

The third schema is used for display of the last chila,

invariably an LOPT node.

As an example of the list rule schemes, consider

the R-ARGOT rule
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statements : M statement ";"

The schemas generated to display this rule would be

Is1 : $1

ls2 : ";"$I

1s3 : "[statements)"

Note that a NL format control character would be 3poropriate

after the ";" terminal in 1s2 and before the literal strin

in ]s3 in order to place each statement and semicolon pair

on a separate line.

e. Predefined

A predefined display function should accompany

each predefined rule scanner. The disolay algorithm will

pass the subtree created by the predefined scanner to the

named display function. For example, the predefined scanner

"id* will scan an identifier, Place it in the symbol taole,

and fill in the TERM node with the information allowina

reference to that symbol table entry for the evaluator. On

display, the routine Midout" will be called to cause the

referenced identifier to be displayed.

D. THE LANGUAGE DEFINITION MODULE

The Lar uage Definition Module is the grammatical data-

base utilized by the Grammar Directed Editor in the -,on-

struction and evaluation of an AST. The Language Definition

Module has a fixed and an interchangeable component. The

fixed comoonent consists of the system Predefined rules and
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functions. The interchangeable component, known as the

Language Definition# is comprised of the languaoe-specific

grammar rules, templates, and schemes. In addition, the

Language Definition may optionally include user-suoplied

predefined rules and functions supplementing or suoerceoinq

those permanently installed in the system.

1. The Language Definition

The primary component of the Language Definition is

the internal representation of the language-specific grammar

as an ordered collection of grammar rules and their associ-

ated templates and schemes. The Language Definition, apart

from user-supplied predefined rules and functions, consists

of a Rule Tree and a string table. The string table con-

tains the character string representation of the templates

and schemas for each rule. The Rule Tree is the ordering

mechanism for the grammar rules which provides access to the

templates and schemes in the string table. The Rule Tree is

a four-tiered hierarchy, the uppermost level of which is a

head node for the tree. The next level consists of a

sequence of head nodes, one for each defined grammar rule.

Under each grammar rule node is a pair of head nodes, the

first for the templates associated with the rule and the

second for the schemes. The fourth, bottom-most tier con-

sists of leaf nodes containing pointers to the template and

schema strings stored in the string table. The regularity

designed into the template and schema definitions for each
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of the rule types allows accessing any leaf of the Rule Tree

by the Editor utilizinn only the operator and rulename

information in an AST node label.

Appendix D is an Intermediate-Level Language Defini-

tion Grammar. Encoded by hand into a Language Definition as

shown in Appendix E, the ILD Grammar orovides the means to

generate a Grammar Directed Editor for the construction of

ASTs representing languaqe-specific Language Uefinitions.

When such an AST is evaluated by the oredefined function

ILD, the result is a language-specific Language Definition

which may be installed in the Lanquage Definition Module and

utilized to construct applications-orientea ASTs in the

language defined by the grammar. AoPendix F presents a sim-

ple example of such an apolications-oriented Language Lefin-

ition from which ASTs representing strictly formatted

memoranda may be constructed utilizing the GOE.

The ILD Grammar allows definition of grammars on an

assembly-language level, i.e., many details which are com-

putable from the R-ARGOT grammar rule must he entered by the

user. For example, in the construction of an iteration rule

the user is required to enter "rulenamet" and "i-rulename"

in a consistent manner throughout the formation of the tem-

plates and schemas. However, at this low level the mechan-

isms for checking such consistency do not exist. Thus the

ILD Grammar is seen as a flexible but error-prone tool suit-

able for use primarily as a bootstrap mechanism for the
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definition and imolementation of a migh-Level Language

Definition Grammar which automatically derives as much

information from the R-ARGOT rule as is possible. For aram-

mars in which all nonterminal children of concatenation

rules are to be created and disolayed in the order listed in

the rule, an extended R-ARGOT notation which provided the

facility for inclusion of format control information and a

means for soecification of oredefined functions as head

nodes of concatenations would allow such automatic deriva-

tion. Development of such an extended notation as well as

the corresponding HLD Grammar and function are deferred

until the symbol table and evaluator designs are complete.

2. Predefined Rules

The set of system predefined rules Provides the user

a mechanism for entering strings representing simple, common

constructs, such as identifiers and numbers, as well as more

involved constructs, such as expressions, which even though

composed of many oarts and Perhaps generating multinode sub-

trees in the AST, may be most conveniently viewed by the

user as representinq single logical units. Predefined rules

are built-in, optional extensions to the Language Definition

which Provide the language implementor with a set of primi-

tives upon which he may base his grammatical constructs.

The set of predefined rules is modifiable and extensible by

the language implementor through inclusion as an adjunct to

the grammar definition a set of predefined rules which
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supercede or complement the set permanently installed in the

Language Definition Module.

Predefined rules may be viewed as a deviation from

the grammar directed editing philosoohy esooused throughout

this work. The use of oredefined rules allows the entry,

after all, of syntactically incorrect strings which are not

immediately, in the sense of character-at-a-time immediacy,

detected and rejected as invalid. For example, compare a

woure*, character-at-a-time grammar directed editor with a

predefined rule augmented GDE on the terminal <strinq>,

defined for illustration to be the concatenation of any

characters except a space, and terminated hy a carriage

return. In the pure system, each character is examined and

its validity checked as it is typed. In this example, if

the user enters a string of valid characters and then a

soace, he is immediately informed that the soace iq unac-

ceptable and is able to Proceed without retyping that por-

tion of the string thus far entered. The oredefined rule

system, however, would require that the entire string of

symbols, including the incorrect space, be entered before

rejecting it, and the user would have to retype the

corrected string in its entirety.

We grant that grammar directed editing down to the

smallest indivisible unit, the character, has a certain

appeal. However, our oredefined rule compromise is

motivated by several advantages and mitigating arguments:
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a. The time lapse between entering even a large

predefined rule inout string, such as a complex expression,

and re-entering it if it is rejected as incorrect, is short.

0. The time lost in a predefined rule system in

retyping the usually short input strings accepted by most

predefined rules is offset by the time that would oe lost in

a oure system that requires control characters to guide the

tree building via the language definition through the vari-

ous alternatives involved in the larger grammatical con-

structst such as expressions# that can easily be handled by

Predefined rules.

c. The syntactic integrity of the AST is always

preserved by the system Predefined rules since no change to

the AST is made until the syntactic validity of the entire

input string is confirmed.

d. Predefined rules simplify the language

i'plementor's task by raising the level of the lowest gram-

matical constructs that must be defined in the grammar.

Instead of having to work clear down to the character level,

predefined rules provide as primitives the facilities for

handling groups of Charactersp such as numbers, identifiers,

and strings, which are the basic building blocks of data

structures in general and programs in particular.

e. Given automatic lexical analyzer and oarser gen-

erators, predefined rules for the class of grammatical con-

structs envisioned are easil built.

too
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f. The suitable choice of predefined rules frees

the language imnlementor from long-winaeo, needlessly

detailed grammatical constructions for a wide variety of

regularly-expressible oroductions. Grammars for lanouage

definitions, given such a set of easily understandable Prim-

itive constructionse would bt more transparent and easier

for the user to assimilate.

It is recognized that taking the predefined rule

aoproach to its extreme limits could result in a compiler-

like editor wherein huge segments are submitted for analysis

to exceedingly complex predefined rules, thereby negating

the benefits to be gained from a more rational qrammar

directed editing environment. However, within the guide-

lines presented here, the Predefined rule approach has dis-

tinct advantages and leaves open avenues for exploration to

the language imolementor.

3. Predefined Functions

Nodes in the AST undergoing evaluation faall into

one of three Categories: undefined, head, and function. The

class of undefined nodes includes all free nodes which may

still exist in the AST. Head nodes node are the HEAD, ITER

and LIST operator nodes created for synthesis of the AST,

all of which are synonymous to the evaluator. Head nodes

have no computatinnal caoabilities during the evaluation

process but rather orovide structure to the AST. Function

nodes have as their operator one of the predefined
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functions. Function nodes are generated by concatenation

and predefined rules during synthesis of the AST and result

in calls to the corresponding predefined function during

evaluation. Function nodes may oe leaves, as in nodes wrich

reference symbol table entries, or they may be interior

nodes. If interior, function nodes must have the number,

orderp and tyoe of subtrees expected by the Predefined func-

tion.

The set of Predefinea functions defines the range of

computational power available to the evaluator and thus lim-

its the capabilities available to the user of the GDE. A

Proposed set of system predefined functions, based on the

primitives discussed throughout (Pratt,19751, is presented

in Aopendix G. This set of system functions may be aug-

mented by the lanquage implementor through addifonal or

superceding function definitions included as extensions in

the Lanauage Definition.

102



iI

IV. PROGRAMS AS DATABASES

A. INTRODUCTION

The material contained in this chapter was originally

developed during the search for a solution to a Particular

problem: namely, that of storing the tree representation of

the synthesized program in secondary storage, with

complicated links to other data structures recorded in the

leaves* in such a way that pointer and reference integrity

could be maintained. This problem is aggravated by the

consideration that such a stored structure miqht well be

reloaded at a time when the physical contents of shared

memory spaces currently in use by the system are Quite

different from the environment existing at the time that the

tree structure was originally Created.

Once this problem was recognized as being a database

management problem, to which known techniques of database

design were applicable, the solution was straightforward.

The database design techniques described throughout this

chapter are taken from LKroenke 1977). The relatively

unorthodox view of orograms as complex databases afforded by

this insight, however# is of more general interest since it

provides a new perspective on the nature of programming

systems. In particular, these considerations provide some

justification for the hope that grammar-driven tree
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synthesizers are capable of buildino up a languaae-

independent semantic structure.

B. PROGRAMS AS COMPLEX RELATIUNSHIPS

In viewing Programs as databases, we first recognize

that the semantic contents of a program must be accessea by

two entities: the human reader or writer, and the processor

intended to execute the program. Comments excludedo the

information available to these two entities is almost

identical: that is, the human user can oredict exactly the

operation of the Processor for a given proqram, and the

processor deterministically executes the encoded intentions

of the Programmer. So without loss of generality, we may

initially consider the Program as a database accessed by the

Processor. In the case of a machine language programs the

Processor is the real machine on which the orogram is to

execute. For a higher-level language, the Processor is the

hardware-software combination, or virtual machine, which is

capable of translating and executing the orogram.

The "semantic content" of the program is the collection

of potential evaluations which the Processor may be required

to perform throughout the course of execution. For the

moment# we disregard the order of execution. Each

evaluation consists of the selection of one of many

primitive operations which the orocessor is capable of

performing, and the application of that chosen Primitive

1'4,
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operation to a number of arguments, contained in one or more

registers, or memory locations addressable in some way.

Upon reflection, it is clear that ooth the set of

primitive operations and the set of adaressable memory

locations are databases in their own riqht. The keyname, or

code by which an entry can be uniquely located, for the set

of Primitive operations is the operation name, or oocode,

and that for the collection of potential arguments is the

address.

Clearly, the set of potential evaluations is, in the

terminology of database theory, a complex relationship

between Primitive operations and registers. A given

operation may be applied to many different sets of arguments

within the course of a program execution, and a given

register may be the argument for a numner of different

operations. There is no functional relationship between

items of the two databases in either direction, which means

that neither keyname can be used to uniquely identify an

item in the complex relationship between them.

C. DECOMPOSITION OF THE EVALUATION RELATION

Standard database design techniques specify several ways

by which each of the elements of a complex relationship

between two databases can be referred to in a systematic and

unambiguous way during database access. Two general methoos

of approach are used. One is to (arbitrarily) force the
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relationshio to be simple (many-to-one in one direction

only), by rejecting from the allowed range of possioilities

any memoers of the relationship which would cause the

relationship to be complex. In this case, tme Keyname for

one of the *nderlying databases can be used to unambiguously

refer to members of the relationshio as well. The second

method is to decompose tne relationship into two simple

relationshios by constructing an intersection database.

There exist programming systems in which the first

strategy is adopted. For instance, if the restriction is

made that registers may not be re-used, so that at most one,

and only one, primitive operation is applied to a given

register, a purely functional, or no-assignment orogramming

system is obtained. In such a system, the only named

semantic elements are functions and constants (whicl may be

regarded as functions). Registers need not be named since

whenever one is needed, it can be drawn from a pool, used

once, and discarded by the processor.

This approach is considered mathematically elegant, but

it is not much in use in non-academic programming systems.

In the second aporoach, an intersection dataoase is

created, consisting of one entry for each distinct memoer of

the comolex relationshio. As a minimum, in order to allow

reference to the generating databases, each entry in the

intersection database must contain the keynames for those

entries in the original data sets with which it is
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associated. Thus, for a orogramminq notation, each entry in

the intersection database must contain, at a minimum, an

oocode and a reoister address for each arqument, in some

form.

the archetyoical entry for the intersection oataoase

corresponding to the evaluation relationship is thus:

OPCODE AODRESS( I ) ADDRESS( 2 ) . . . ADORESS( N

This format is recognizaole as the atomic unit of notation

for most common orogramming systems, from machine code to

high level languages. Each sinqle such entry corresponds to

what is normally referred to as an instruction. In summary,

we assert that a orogram is nothing more than the

intersection database for instances of the evaluation of

accessable operands by the orimitive operations available to

the evaluatinq processor.

D. CONTROL STRUCTURE

ne have heretofore ignored the question of how the order

of execution of the evaluations is to be soecified within

the prooram (the basic elements of which are now seen to oe

entries in an intersection database). This order

corresponds to the logical access sequence of the set of

instructions. Thus, we may equate the ordinary notion of

the control structure of a orogram, to the database-oriented

notion of a looical access structure for the program

dstabase. The simplest access mechanism for a dataoase is
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to order it as a simple sequence. Under this orotocol, the

elements of the database will be oPresented to the accessinq

entity in a strictly invariant sequence.

Such an accessing structure is realized in such simple

proaramming systems as that of a keystroke-proqrammable

calculator. A seouence of keystrokes can oe entered and

automatically reproduced at will, but there is no

possibility of automated branching.

Such orogramminq systems are fundamentally limited in

mathematical computational Power. The simplest modification

to such an access regime is to allow conditional oranching,

so that a part of the instruction sequence may be repeated

or skipped, based on the contents of a register at the time

the Oranch is reached.

Machine and assembly-level Programming systems, as well

as such high-level languages as BASIC and FORTRAN, are

organized on such a plan.

E. STRUCTURED PROGRAMMING SYSTEMS

The disadvantage of a sequential access mechanism is

that the resultina database does not have local integrity.

Instruction sequences which may be logically adjacent under

certain circumstances are not necessarily physically

adjacent. This access organization presents no real

disadvantages for the machine processor with a random-access

architecture# but can be quite confusing for the human
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proqrammer. To render the program aataoase more accessible

to the user, tho notion of structured programming was

developed. This oroanizational techniaue consists of

organizing the access of a orogram database in a

hierarchical (tree-like) manner, so that orogram control

follows a hierarchical program structure which can be

expressed as a string qenerated by a context-free grammar

(and thus has an associated ohysically hierarchical

structure induced by the grammar). Such program control

facilities as functions and subroutines were the earliest

*structured constructs". The syntax of such languages as

PASCAL and ALGOL, however, were consciously designed to

facilitate the exoression of a hierarchical control

structurer and make the expression of a disordered,

sequential control structure less attractive than the use of

structured" control operators. It is this historical

development which encourages us to hope that a language-

independent semantic tree structure may be built using a

grammar-driven tree editor. Basically, we note that it has

become a conscious design principle in the develooment of

structured programming languaqes, to ensure that orogram

control flow follows the syntactic organization of the

language. The underlyinq set of primitive ooerators havo a

great deal in common. Language-dependent primitives can be

added to the set available to the Processor and evaluated

without regard to the specific syntax by which they 4re
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expressed* provided that the overall control structure of

such additional Primitives is also hierarchically organized.

F. PHYSICAL REPRESENTATION OF A TREE-STRUCTURED PROGRAM

Ae are left with the Problem of physically representinq

a tree-structured program in a sequentially organized

physical memory space. The problems encountered are

precisely those encountered when attempting to implement any

hierarchically organized intersection set. They stem from

the requirement to refer, directly or indirectlv to the

entries in the parent databases from more than one place in

the intersection database. Two general strategies, each

with its own advantages and disadvanteges, are currently in

use in database management systems.

1. Sequential Tree Representation

This strategy is implemented by representing the

tree as a linear list of nodes and their contents in

preorder sequence. References to the parent databases are

embedded in the listing by keyname. The complexity of the

relationship implies that each Such keyname must be repeated

many times throughout the list. Special delimiters are used

between node listings to indicate whether the next node is a

child, sibling, or uncle of the last. If one of the

keynames is to be changed, a search of the listinq must be

made to find all of its occurrences. A second major

disadvantage is that in order to access any part of the
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list, the list must be traversed seouentially from tme

beginning. On the other hand, no pointers need occur

anywhere in the list, so that it can be moved about freely

from one place to another without change.

2. Linked Representation of Trees

Trees are represented in this strategy by nodes

linked together using Pointer fimlds within each nooe. A

pointer is either the absolute address of the entity Pointed

to, or an offset or array subscript which can be usea by

routines in the system to calculate such an address. The

salient feature of a Pointer reference is that it allows

reference by some mechanism which is independent of the

value of the referenced entity. Thus, the value of the

entity itself can be changed without changing all of the

references to it, which are still valid (provided, of

course, that the change is made without physically moving

the changed record.) when the tree itself is represented by

means of nodes linked with pointers, it is common to link

the leaves of the tree to the parent datahases with pointers

as well. It is assumed that a means exists to distinguish

such external links from the internal )inks defining tme

tree structure itself. This representation has as one major

advantage the ability to be auickly traversed (by following

Pointers). Another major advantaae of this strategy is that

information in referenced databases need only be recorded

once, and can be changed without uodatina any Pointers.
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Deletion of information is somewhat more difficult, but can

be accomplished by constructing and maintaining cross-

reference lists (inverted lists) whiCh contain Pointer

references to all nodes in the tree referrino to a qiven

record in the parent database. The Primary disadvantaqe of

such a reoresentation is that the structure Cannot be moved

or stored without a great deal of pointer modification. The

use of relative pointers is an inadequate solution, since

the consistency of references to the Parent databases, wich

need to be moved and managed as separate entities, must

still be maintained.

3. A Hybrid Strateqy for Tree Representation

An examination of these characteristics indicates

that the linked reoresentation is preferable when changes

are to be made to either the parent or tree databases, but

that the sequential representation is Preterable when the

database is to be transmitted from one location to another,

or stored unchanged for a relatively long Period of time.

(Storage is equivalent to transmission from one time to

another, and is thus logically the same problem as that of

movement.)

me conclude that the linked representation is an

appropriate reoresentation for the program tree ouring

synthesis and evaluation, but that the program tree should

be moved (or stored on secondary storage) in sequential,

pointer-free format. Links to the parent databases are
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converted from pointer references to reference by keyname.

The next section addresses the problem of how conversion

between the two representations can, in general terms, be

accomplished.

6. PROCEDURAL REPRESENTATION UF DATA

In order to incorporate these ideas into a feasible

design, we consider the facilities that would have to exist

in such a system. Since the program tree is to be operated

on in main memory with a linked representation, we may

assume that a data manipulation package exists which is

capable of synthesizinq and maintaininq all of the pointers

required to keeo the linked structures coherent and

consistent. Consider the process of removing a sequentially

organized tree structure from secondary storage and loadinQ

it into internal memory. This process must consist of

ordering a particular series of function activations with

particular arguments from the data manipulation packaqe,

causing the desired structure to be built within physical

memory. The sequential representation is seen to be nothinq

but a proqram for the data manipulation package, which is

itself a processor with a number of primitive operations.

Moreover, a strictly sequential control protocol for

this program is possible, given a reasonably powerful set of

primitives in the data manipulation packaqe, since a tree

can be synthesized in strict pre-order sequence (the parent
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for each child exists at the time of the child's synthesis.)

Ole conclude that the approoriate secondary

representation for a Program tree is as a sequential list of

instructionst to be translated by some simple interpreter

into a series of calls to the data manipulation package.

The offloado or transmit process, consists of a pre-

order traversal of the linked representation, emitting the

aopropriate instructions for recreating the skeleton of the

tree and filling in the contents of each node as it is

reached. At the same time, references can be removed from

the appropriate cross-reference lists, triggering removal of

the data item from the parent databaso when a reference

count of zero is reached. Durinq onload, the skeletal

structure of the tree is recreated, and external references

in symbolic form reloaded into the aporopriate parent

database. Pointer and cross-reference list creation and

maintenance is performed automatically by the Pre-existinq

data manioulation packaqe.

The secondary representation can thus be viewed either

as data, representing the tree in linear format, or as a

program for the data structure manipulation package which

will cause a logically equivalent tree to be reconstructed

in available memory.

As a beneficial side effect, if the capability is

installed to allow the onload and offload translators to

read to or from strings in main memory, the described system
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provides an easy way to copy or move subtrees, as well as to

encode tree-building templates efficiently. In fact, the

proposed mechanism becomes the method of choice for any and

all movement of tree structures from one location or time to

another, since the data in the transmitted stream is

entirely loqical, containing no reference to any

implementation details. The Process would even allow

internal representations to be transmitted from one

installation to another with a completely different

implementation, since all implementation-dependent data is

removed during the offload Process and reinserted during the

onload process.

H. SUMMARY

In this section we have viewed Programs as specialized

databases, and have found that standard database models

correspond nicely to various proqramming language styles.

Two fundamental conclusions have been reached. The first is

that it seems very likely that qrammar-driven tree editors

can be used to produce trees representing the control

structures for common programming languages in a syntax-

independent, directly-evaluab:e format. This hope is based

on the direct expression of hierarchical control structures

by the syntactic hierarchy imolicit in the defining grammars

of current Programming languages, and the recognition that a

small set of such control structures provides the common
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oase for current language design.

The second result is the solution to a technical

problem: that the aporopriate format for such program trees '

is in linked form when the tree is undergoing modification,

and as a sequential, orocedural, pointer-free list of

instructions when the tree is being stored, or transmitted

from one ooint to another.



V. A PROTOTYPE SYSTEM DESIGN

In this section* the design for a prototype system

demonstrating the feasibility of the ideas oeveloped in

previous chapters is described. Since the imolementation of

the described system ist at oresent, incomplete, the design

is oresented only in broad outline. A full description of

the demonstration prototype will be Provided as a Technical

Report when the initial implementation is comolete.

The approach taken is to first describe a comolete system

for a grammar-driven, language independent Programming

environment, and then select a subsystem for implementation

as a Prototype feasibility study. The prototyoe subsystem

will be used to generate statistics concerninq memory size

and comoutational efficiency, as well as to refine the user

interface, with the possibility remaining of extending the

prototype to a more complete implementation at a future

time.

A basic block diagram of the complete system is provided as

Figure 5.

A. SYSTEM MODULES.

The prooosed system consists of the following modules:
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1. Data Structure Support Module.

This module contains packaqes of functions, each

package implementing a soecific abstract data type needed oy

the remainder of the system. At a minimum, the abstract

data tyoe packages needed include one supporting an

indefinite number of indefinitely larqe association lists,

(to represent the contents of tree nodes), and one

supporting general ordered trees, optimized toward

reasonably efficient traversal in all directions. In

addition, the tree support package must include a facility

for linking the leaves of trees to other data items, such as

strings, symbol table entries, numerical contents, and so

on. Each tree node (internal as well as leaf) must oe

linkable to an association list representing the contents of

the node.

In addition to supporting tree and association list

data types, this module Is responsible for supporting any

additional data types for which the need arises and which

are not supported directly by the language used for

implementation. (In Particular, the implementation

currently being developed requires a very primitive string

table which serves as a rudimentary symbol table.)

2. Grammar-Uriven Environment Module.

This module provides an editor-like interface for

the user. It translates user commands into aporopriate

system actions, which include editing functions, directives
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to evaluate a Particular program structure, and movement of

Abstract Syntax Trees from secondary to primary storage and

oack again. A major component of this module is the

grammar-driven synthesizer itself.

3. Memory Management Module.

This module comprises the actual system primary

memory itself, which is used to store the LD (Language

Description) and AST (Abstract Syntax Tree) currently in

use. In addition, the primary memory module contains the

data structures being manipulated by the Data Structure

Support Module.

4. File Management Module.

This module implements a single-user workspace on

secondary storage which contains all of the LD's available

to the user. as well as all of the AST's which may have been

previously created and saved. These components are stored

in secuential, ocinter-free format as discussed in Chapter

IV.

5. Input/Outout Manifolds.

These modules manage the system input and output

streams, which may be redirected as required by components

of the system (including the user) to various physical

devices. The input stream may be taken from the keyboard, a

file on secondary storage, or a string in primary storage.

This assignment may be changed dynamically during the

operation of the system. Similarly, the Output stream may
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be dynamically directed to the CRT, a string in orimary

storaoe, or to a file on secondary storage. (The term

amanifold* is used to suggest that these functions may be

thought of as three-position switches, the settinq of which

may be chanqed at will during system operation.)

b. Onload and Offload Translators.

These modules, controllino the Data Structure

Support facilities, convert the sequential data

representations stored on secondary storaqe to the linked

representation needed when an LO or AST is loadea into

primary memory, and vice versa. As a secondary feature,

since the input and output streams may originate or oe

directed to internal strings, these modules can be used to

"quote" or "unquote" tree structures, as when a template is

translated into an actual subtree replacement.

B. PRE-EXISTING MOOULES.

The current implementation is being made usinq the C

Programming Language on a POP-1i with the UNIX Operatinq

System. (UNIX is a trademark held by Bell Laboratories,

Inc.) This software combination provides a C-accessible

interfac to memory and file management facilities. In

additloo, a complete library of string hanaling and

input/output functions is available. In consequence, the

memory and file manaqement modules described above may oe

thought of as already in existence, for the ourpose of

120)i



describing the Prototype subsystem. In addition, keyboard

and CRT interfaces are already operational: under the UNIX

operating system, hardware interfaces are mapped into the

system as files with conversion routines provided

transparently. Thus, for the Input/Output Manifold module

we need only Provide a means of diverting the input and

output streams from one file to another, or tn main memory.

C. SUBSYSTEM SELECTION.

Given the broad outline of system module function

provided above, a minimally capable prototype subsystem can

be selected for initial implementation. Such a subsystem

must be capable of initialization, synthesisp display and

storage of an AST in order to demonstrate convincingly the

feasibility of the concepts outlined in previous chapters.

Facilities to evaluate (execute), revise, and debug

previously entered AST's may be deferred, as may the

facility to easily install a new Language Definition.

Therefore, the capabilities provided by each of the modules

in the Prototype subsystem may be redefined as follows:

1. Data Structure Support Module.

Full Packages supporting general ordered trees and

association lists are needed. In addition, a orimitive

capability to store and reference string values is needed.

The capability to suoport sophisticated symbol table

structures may be deferred to Such time as semantic
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information is needed to allow execution of AST structures.

2. Grammar-Driven Environment module.

The only major capability required by the prototype

subsystem is the "append" function, which can oe usea to

create AST structures. In addition, a working display

mechanism with simple cursor control facilities is neeaea.

A frame-oriented display mode is satisfactory for the

prototyPe system (although eventually a screen-oriented

display driver would be desirable). Finallyr facilities for

storing and retrieving AST's to and from secondary storage

as well as a facility (however cumbersome) for installing

new language definitions is needed.

3. Input/Outout Manifolds.

These modules need to be implemented in full, in

order that secondary storage may be used, and in order to

allow templates existing in primary memory to appear in the

input stream for Processing by the Onload translator.

4. Onload and Offload Translators.

These components also must be fully implemented for

the same reason as the Input/Output Manifolds. The

implementation must be flexible enough so that as more

sophisticated data structure packages are added, the

sequential representation can syntax can be extended to

accomodate onload and offload of keyfields in the new

structures.
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5. Bootstrap Procedure.

The system can be initialized as follows. lie

currently regard Languaqe Definitions as oeinq written in

one of three languages, or notational systems: a high-level

format (which is to consist of R-ARGOT notation with display

and semantic specification extensions), intermealate-level,

(the notation developed in Chapter II)p and low-level, (the

sequentialized, Pointer-free reoresentation of an internal

tree corresponding to the desired LD, using the language

alluded to in Chaoter IV.).

There is no fundamental difference between the

intermediate and low-level formats, since they represent two

alternative representations for the same database.

Translation from one format to the other is performed

automatically by the onload and offload translators when

this database is moved to and from secondary storage.

In order to bootstrap the system, once all of the

modules have been compiled and linked, it is necessary only

to perform the Job of manually translating an intermediate-

level description of the intermediate-level language to the

corresponding low-level description, and install the

resulting text as a file accesible to the system usinq a

conventional editor.

At this point, the system facilities can be actuated

to load the file as a language descriotion into system

primary memory. During the loadr the onload translator will
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convert the description into a linked representation of the

database needed to describe and guide the synthesis of new

language descriptions in the intermediate format. That is,

the system itself can now be used to create, as a grammar-

driven editor, additional language descriptions.
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VI. SUMMARY.

A. CONCLUSIONS.

In the preceoina chapters, a conceptual foundation for

the interactive creation of databases, structared

hierarchically according to a given context-free grammar,

has been Provided. The Primary conclusions suooorted oy

this work are:

1. A basic model for the described process is that of a

valid sentential form generator, rendered determinate Dy

allowina for the interactive selection of which production

to apply and at which point in the already-derived structure

the selected substitution is to be made.

2. Notations exist (e.g. the R-ARGOt notation) for the

specification of qeneral, context-free grammars which are

both human-oriented and directly interpretable as the

knowledge base for such a system.

3. The basic mechanism correctly interprets ambiguous

or incomplete grammars# as well as allowing for the

synthesis of correctly labeled incomplete derivations.

4. Analoqous mechanisms can be described which derive

and display not strings, but derivation trees which are

morphisms of validly derived strings under the specified

grammar.
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5. rhe grammatical notation can be transformed into

context-independent operation codes with arquments which can

be stored in the leaf nodes of the derived tree in such a

way that subseQuent synthesis proceeds correctly, and

subtree deletion can be efficiently and consistently

performed without examination of the surrounding context in

the tree.

6. The resulting derivation trees can be used to encoae

semantic information in such a way that the trees can be

evaluated correctly without further reference to the

syntactic, as opposed to physical, structure of the tree.

(This assertion is a speculation, not a firm conclusion.)

7. A method exists for storing such structures in such

a way that their consistency does not depend on any external

data structures save the languaqe definition itself.

5. mORK IN PROGRESS

Implementation of the prototype subsystem is currently

in progress, with no difficulties currently foreseen. The

only module awaiting final coding and test is the Grammar-

Driven Environment module itself, and the algorithmic

soecification of the functions needed has already been

accomplished. Provided that no further difficulties are

encountered, a complete description of the prototype

subsystem will be later provided as a Naval Postgraduate

School Technical Report.
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The orototype subsystem code is oriented toward a

demonstration of technical feasibility as opposed to storage

or execution time efficiency. However, it has been written

in a highly-modularized manner, so that after

instrumentation and performance measurements appropriate

modifications can be made fairly easily. An attempt has

been made to provide for the extension of the orototvpe

system to a more complete realization of the original system

des i gn.

C. FUTURE RESEARCH DIRECTIONS.

After completion of the prototype subsystem* two

directions are indicated for futwre investigation.

1. Extension of the Prototype Subsystem.

a. Symbol Table Implementation.

A generalized symbol table data type must be

defined which will adeQuately support a wide range of

proqramminq languages.

b. Semantic Action Implementation.

A class of primitive operations (including

access facilities to the defined symbol taule structure)

must be formulated, provision made for lanquage-imolementer

definition of additional primitives* an an AST interpreter

written.
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C. Pattern-MatchinQ.

A pattern-matchmnq facility should oe Provided

as part of the user interface as a sophisticated means of

cursor control. A fairly simple pattern-matchinq

capability# when combined with the ore-existing capability

to access the AST in a syntax-oriented way, would allow the

user to search and access the structure in very

sophisticated ways; e.g. such commands as "find the next

occurrence of an assignment to identifier a" could easily be

formulated. Moreover, when Combined with a relatively

straightforward debug facility, (for example, setting of

break-points) a very high-level program test facility could

be Provided.

d. High Level Language Descriptions.

The high-level format for both syntactic and

semantic language specification should be formulated and

implemented as a more convenient means for implementing new

lanquages.

e. Debugging Tools.

Provisions should be made to allow the user to

set breakpoints, access the current data environment* and

order step-by-step execution modes from the editor.

f. Dynamic Language Changes.

The feasibility of allowing language changes to

be made dynamically during AST creation or execution at

points specifiable in the language oefinition should oe
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investiqated. Related to this oroblem is the provision of a

facility to link (perhaps dynamically) one AST to another.

g. Increased Storaqe Efficiency.

Once basic design Parameters, now indefinite#

(Such as number of orimitive operations) are made final, the

desirability of packing data fields into AST nodes rather

than using the space-inefficient association list

implementation, and the resulting impact on time-efficiency,

should be studied.

h. Full User Interface.

Deferred edit functions, such as delete and

insert, should be installed in the Grammar-Uriven

Environment Module.

2. Additional Applications for the Technology.

The conceptual framework oroviaed by his oaper is

sufficiently general to support unexpected apolications in

areas quite distant from the field of programming

environment design. A few such aoplications are suggested

below:

a. Generalized Editing.

Generalized editors, as described in [Fraser

1980), are editors which provide for the manipulation and

display of data structures other than text files. The

mechanism is well-suited for the direct editing of a

hierarchically orqanized database of any type.
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b. Sparse Programmina '-anguaqes.

Current programming languages are designed with

a oarser-based implementations as a fundamental assumption.

For that reason, they typically include many keyword and

Punctuation symbols which are irritating, because

superfluous, to human users. Recause the described

technology can utilize ambiguous grammars, soarse languages

with the minimum amount of Punctuation needed for human

comprehensibility can be described which could be

implemented using grammar-driven synthesis as the

fundamental input mechanism. In fact, improved Performance

from the synthesizer could be expected fo' such a "pseudo-

code"-like language, since the inherent semantic density of

the derivation tree could be made very hiah.

c. Artificial Intelligence Applications.

In the described desiqn, considerable pains have

been taken to provide a simole, uniform method for grammar

rule and point of aoplication selection, suitable for use Oy

a human operator. There is no fundamental reason why very

complicated heuristic methods could not be used, however, to

select the rule to be applied and the place in the current

structure the application is to be made. For instance, a

production system (in the Artificial Intelligence sense)

could be used to perform this function. The resulting

hybrid system would have a heuristic front end, and an

algorithmic beck end, with the desirable property that
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whatever structure the heuristic front end attempted to

build, the resulting structure would always oe guaranteed to

be corrrct in terms of the *deeo structure" specified by the

lanquage description. Attempts by the heuristic module to

perform inconsistent modifications would be detected,

prevented, and reported by the synthesis module. A

knowledge representation based on such a system would be

able to interact with the user in very irregular, and

occasionally incorrectr ways, while preserve a fundamental

internal database with guaranteed consistency.
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APPENDLA A. iUrATIUNAL YrSftMS FUR CLNrEXT-FHE. wRAMMANS

1, 8ALKUS-NAUR FURMAT (in R-ANGUT)

context-free-grammar: f production

production: non-terminal "::" right-hana-sie J ,.

right-hand-side: + construct

construct: 4 terminal : non-terminal k

non-terminal: *<" string >

terminal: "string".

he assume that "string" is a sequence of any appropriate

character set not including the metasymbols.

Note tnat this notation is in itself a regular language.

2. ARGOT NOTATION (in R-ARGUT)

ARGOT: + rule

rule: rule-name ":" concatenation.

concatenation: •suo-expression

suo-expression: i optional-iteration
simole-iteration
list-iteration
option

alternation
optional-alteration
rule-name
terminal

group

octional-iteratlon: "*" sub-expression

simple-iteration: "+" sub-expression

list-iteration: "N" sub-expression sub-exoression * * .

option: " concatenation "]"

1 32
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alternation: "(" concatenation NI" alternatives }"

optional-alternative:"t"concatenation "I" alternatives"]"

alternatives: 0 concatenation "" .

group: "(" concatenation ")

terminal: " " " string " N

rule-name: string.

("string" is taken to De a predefined rule.)

3. R-ANGOT (in R-ARGUT)

N-ARGOT: + rule .

rule: rule-name ":" expression *e

expression: f concatenation
iteration
list-iteration
alternation

concatenation: +fiela

iteration: "+" rule-name

list-iteration: "#" rule-name field ". .

alternation: "4" rule-name " alternatives ."

alternative: 9 rule-name * * * *

fielo: A rule-name
option
terminal

option: "I" rule-name "I"

terminal : " * string " N

rule-name: string .

Note that this notation is, in itself, a regular

language.
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APPENDIX a. A 6RAMMAR FOG PASCAL
IN RI-ARGOT

PASCAL: "program" identifier "(" name-list "I" ""

Olock ".•

Oloci: [ labels I t constants ][ types J 1 variables I

I subroutines I "begin" statements "end"

labels: "label" integers ";" .

constants: *constant" c-decls ";"

types: *type" t-decls ";"

variables: "var" v-decls ";" .

subroutines: + s-decl

integers: +integer

c-decls: # c-decl "" .

c-decl: identifier "=" constant

t-aecls: # t-decl ";" ..

t-dec1: identifier "=" type

v-ecls: 0 v-decl "" .

v-aecl; name-list ":" type

name-lis: 0 identifier U, .

s-aecl: i p-decl
f-dec!

p-dec): "orocedure" identifier I parameters I
bloCk *;•

f-deol: *function" identifier Eoarameters) ";" identifier";"

Olock ";" .

parameters: "(" param-list ")"

param-list: 0 param-section ";" .
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param-section: {f-params
*v-params

p -p ara ns
c-pa rams

f-params: "function" name-list " iajentifier

v-params: "var" name-list 0:0 identifier

p-params: 'procedure" name-list.

c-params: name-list ":" identifier.

type: I scalar-type
subrange-type

*Pointer-tyne
set-type

*array-tyoe
*record-type
f ilIe-type
identifier

scalar-tyoe: "(" name-list )

suorange-type: constant ".." constant

pointer-type: "?" identifier

set-tyoe: i packed I "set* "of" simple-type

array-type: ipacked) "array" "[" subscripts "I" "of" type

record-tyoe: I packed J "recora" I field-list I "end"

file-type: I oaCxed J"file" "of" type

packed: moacked"

simale-tyoe: {identifier
*sealar-type
subrange-tyoe

field-list: 4*var-fields
mixed-fields

mixedi-fields: fixed-fields (and-var-fieldsJ
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ana-var-fields: ";* var-fielas

tixea-fielas: 4 fixed-field N;"

fixea-fiela: name-list ":" type.

var-fielas: "case" ( tag ) iaentifier "of"

variants

variants: 4 variant ...

variant: constant-list ":" "(" ( fiela-list j U)"

constant-list: 4 constant ,.

statements: # statement ;" .

statement: I integer ) i action I

action: I assignment
Procedure-ca)l
compound
if-statement

;repeat
; whi Ie
; for

i case-statement
;goto

assignment: variable *z" exoression

procedure-call: identifier I arguments I

arguments: w(" arglist ")"

arglist: 4 argument ", * . * *

argument: identifier
expression

compound: *begin"
statements

Wendf

if-statement: "if" expression "then*
statement

else-part

~13b
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else-oart: "else"
statement .

repeat: "reoeat"
statemencs

until" expression

while: wwhile- exoression "do"

statement .

for: "for* identifier ":=" expression t-or-d expression "do"
statement

t-or-d: { downto
* to.

downto: *downto"

to: tO *

case-statement: "case" exoression "of"
cases

tend"

cases: 0 case ; . . *

case: constant-list ":, statement.

with: *with" variaoles "ao"
statement .

goto: "ooto" integer

variables: 0 variable "" . • .

expression: ( it
t.e
ea

qte
gt

neq
* in
s-expression

i

It: s-expression *<" s-expression.

Ie: s-expression "2:" s-expression.

*q: s-exp.resslon ":" s-expression.
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gte: s-exoression '" s-exoression.

gt: s-expression *)" s-expression.

neq: s-exoression "<>" s-exPression.

in: s-expression "in" s-expression.

s-expression: i Sign I u-expression.

sign: ( plus-sign
minus-sign

Ir.

plus-siqn: "+"

minus-sign: "-"

u-expression: I olus
* minus
Sor

term
p t

plus: term "" term

minus: term "-" term

or: term *or" term

term: ( times
quot
div

* mod
* and

factor

times: factor "*" factor

quot: factor "/" factor

iv: factor "div" factor

moo: factor "mod" factor .

and: factor "and" factor
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factor: ( group
not
set

Sv-or-c

group: "(" exoression N)•

not: "not* factor

set: "" ( set-members I "I"

set-members: 0 Set-member ..

set-member: r 'ange
expression

* .

range: expression ".. expression

v-or-c: i unsigned-constant
varIaple

variable: identifier [ modifiers I

modifiers: + modifier.

mooifier: ( subscript
field-reference
indirection

suoscriot: "I" exoressions "I"

field-reference: "." identifier

indirection: "t"

expressions: 0 expression ",* . .

It is assumed that Predefinea input scanners exist for

the rule names *integer", "identifier", "constant", and

*unsigned-constant".
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APPENDIX C: TRANSFORMATION TEMPLATE GRAMMAR

The following grammar defines symbol strings which are

interoreted as calls to tree-building and noae-modifyinq

routines whose existence is assumed, as is the interpreter

which makes those calls. Also implicit in the following de-

finitions and discussion is the notion of a "current node",

aefined for the purpose of the apolication of temolates to

be any free node in an AST.

temolate: 4 subtree 1 siblist )

subtree: boundnode (childlist]

childlist: "(" siblist ")".

siblist: 0 freenode i"

boundnode: boundoo rulefield

freenode: freeop rulefield

rulefield: rulename

boundoo: { HEAD IITER LIST : pdf .

odf: f (predefined functions) )

freeop: ( NT a ALT 1 COPT 1 IOPT LOPT : TERM .

rulename: 4 (grammar rulenames)

(predefined rulenames) *
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The Template Grammar oroduces operator and rulename

pairs# both bound and freer punctuated by the terminal sym-

O01s W(U N;" "," and ")" which are interpreted as followsi

(=: Create a child node under the current node, make

the node created the current node, and overwrite the OP

field with the operator listed nexz.

";u: Create a right sibling of the current nodep make

the node created the current node, and overwrite the OP

field with the operator listed next.

, N: Overwrite the RULE field of the current node with

the rulename listed next.

*)*: Make the father of the current node the new

current node.

The first symbol of every template is an operator# ei-

ther free or bound# which overwrites the OP field of the

current node* The current node is the only node in the AST

which is modified in any way by a template; new nodes may

be created, but always within the context of the current

node.

The templates defined by this grammar allow definition

of the transformations in Chapter III. The following exam-

ples illustrate the various constructions most commonly en-

countered,
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I. Single node replacement, rule field unchanged:

Transformation: a

NT,a =,> ALT,a

Template:

ALTa

2. Single node replacement, operator ano rulename modifiea:

Transformation:

ALT,a => NTr

Template:

NT,r

3. Replacement with sibling string:

Transformation:

TOPT,i z2 COPTr2 NTPrI OPTi

Temolate:

COPTrP2 ; NT,rI ; rOPT,i

4. Replacement with subtree:

Transformation:

NTc => NTPr COPT,r2 NT,r3

Template:

HEAD,c ( NT,rI ; COPTr2 ; NT,P3 )
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APPENDIX D: INTERMEDIATE-LEVEL LANGUAGE DEFINITION GRAMMAR

ILD: langname rulelist textensionsi.

rulelist: + rule.

rule: 4C-rule

a-rule

i-rule

)-rule )

c-rule: 4c-rule-a

C-rule-b )

c-rule-a: c-rulename w: cdef-a

cdef-a: + defpart.

defoart: 4 rulename :option :terminal )

option: "E" rulename "I".

ctla: headop "(" freelist ""

headop: ( head sdf 1.

head: *HEAD".

pdf: 4(predefimed functions) )

treelist: freenode N;* 0

freenode: freeop *P rulename.

fr~eop: ( nt 'copt )

nt: "NT".

copt: "COPT".

csla: + dispart.
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disoart: I subtree :literal '.format ~

suotree! integer (oodisfidi.

oodisfld: I optodf 1Pdfodf :undodt )

ootodf: "=an(* rulename JW

pdfodif: "=*"<" rulename """

undodf: 14o( rulename """

c-rule-b: c-rulename *:" cdef-b

ctlb *=" csIb

cdef-b: terminal.

ctlb: "HEAD," c-rulename.

csub: + termoart.

termpart: 4literal Iformat k.

a-rule: a-rulename *" adef

adef: "(a aitlist")

el1t? aitchar ": rulename.

ati: "ALT," a-rulename.

at2: "f" alt-temp ""

alt-temp: 0 alt-t Oee

alt-t: altchar ":NT** rulename.

as:"0" a-rulename .

alt-disp: 0 alt-d " ,

alt-d: aitchar :"rulename.

i-rule: i-rulename ":idef
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idef: r ulenamet.

itl: "ITER ( NT," rulenamel "; OPi,' 1-rulername N"

it2: "NT," rulenamet. "; IOPT," i-rulename.

is 1 0 " Si"0.

i32: "E" i-rulename "I".

)-rule: I l-rule-a

!I 1.rule..b

!I-1rule..c

)-rule-a: I-rulename ": det-a

Idef-a: "N" rulenamel rulename2

lt2a: "NT," ruleriame2 "; NT," rulertamel

"LOPT," I-vrulename.

Is2a: "51320.

1-rule-b: 1-rulename I: def-b

Idef-b: ""rulenamel "E" rulename2 "I" "."

It2b: "COPT," Pulename2 "; NT," rulenamel.

*; LOPT," I-i-ulename.

1s2b: "S1:C" rulename2 "1$2".

1-rule-c: 1-rulename ": def-c

ldef-c: "0" rulenamet terminal "."

lt2c: "NT," rulenamel LOPT," 1-rulenam.

l92c: terminal"S.



Itt: "LIST CNT," rulenamel LOPI." 1-rulenamC )"

I sI "SIM.

format: {newline :tab Iuntab )

newline: "NLO.

tab:"TO

untab: OUT",

extensions: userpdr userodf.

userodr: (undefined).

userpdf: (undefined).
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4PPENDIX E: LLO GRAMMAR~ LANGUAGE DEFINT1i,4

LLD: langname ruIelist (extensions)

:) ILDILD

(NI',Strinq;

NTprulelist;

COPTrextensiois)

$ 1="clalgname@)" $2 33=0[extensions]"

rulelist: + rule

(NT, rule;

IOPT,rulel ist)

> NT,rule;

IOPT~rulel ist
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rule: c"-ule

a-ruleI

i-rule

I-rule

)ALTprule

I c:NT~c-rule

a:NT,ainrule

I:NTOrulee

"c:c-rule : a-rule i:i-ru'le 1:I-rule )

c-rule: 4 c-rule-a

e-rule-t

=> ALT,c-rule

S4ac-rule-a

b:c-rule-h I

' 4c-rule)"

8 :c-ru)e-a O:c-rule-b )



c-rule-a: c-rulename ":" cdef-a

SHEAD,c-ruleSa

NTpcdef-a;

NT,ct 1a;

NT, Csl1a)

Z> Sl=*<c-rufename)"* "2:" $2

cdef-a: + defpart

=> ITER,cdef-a

C NT ,de pert ;

IOPT,cdef-a)

Z> NT,defpart;

IOPT,cdet-a

=> $I

=) "[delfpartJ".

detoert: I rulename ootierp terminal

=> ALT,defoart

=> I r:NT,String

0? NT ,opt ion

t:NTfterminal)

> *(defpart)*

=> *4 r:rulemame o~option : t:terminal J
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oot ion: "i" rulename "I"

:~HEAD,option

(NTSt rinrg)

=> "I" SI:"<rulefeme>" "

ctla: headop "(" freelist )

=> HEAD,ctla

(NTheadop;

i4T,freei ist)

headoo: I head I pdf

SALTpheadop

=>4 h:NTphead

p:NT~pdf) 3

:) 4headopi"

=> 0A h:?4EAD ppdt "

head: "HEAD"

H~~EAOphead

pdf: f (predefined functions)

=2 ALTppdf

=> 0l
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treelist: m reenode ;

-~LIST,freeflst

(NT,fireermode;

LOPT, free! ist)

-~NTpfreenode;

LOPT, freel i t

-) (freenodel"

freenode: freeop *, rulename

Z-o HEAO~freemode

(NT, freeop;

NT St ring)

=10 Si "p' S2=<rulename:-u

freeoo: (nt itcopt I

=10 ALr,freeop

:~(n:NT,nt

c:NTpcopt)

*) {reeoo)"

m :NT :c:COPT )

n t *mNT"

A : $NT%



copt: NCOPT"

:~HEAD,eoct

O) COPTO

Csla: # dispart

=> ITER,csta

IOPT,csta)

:,NT,dispart;

IOPT,csta

discart: (subtree literal format

)ALTodiscart

=> s:NT,subtree

):NT,Iiteral

f:NT,format

=> "Idispart)"

=> "4S:subtree l1literal :f:format )

subtree: "S" integer [oPdisfid3

=)w HEAD,subtre

(NT, Integer;

COPT,opdi stld)

") S" S13(Iinteer>'" s2z"ropdisfldJ"
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oodisfid: (optodf : pdfoal undodt

=21 ALT~oodisfid

:o f o:NT~optodf

P:NT,Pdfodf

u:NT~undodf I

=> "{oodisfid)*

=> Of o:optodf : Pdfodf u:uridodf )

octodf: ="I" ruleneme "Jn~

:~HEAD,optodf

C NTString)

a=""'[" S1=0<rulename> Jn

=> HEAD,odfodf

(NT,St ring)

undodf: "( rulename '

=> IEAD~undodf

C NTSt ring)
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C-rule-b c-puloname 0:0 cdef-b

-)HEAD,c-rule--b

(NTOStrimg;

NTpedef-b;

N T , t I b;

NT, cs ib)

2> S1:o~c-rulename>" ft:" S2 ":=>" $3 :

cdef-b: terminal

-') tEAOpcdef-b

(NT,terminal)

-20 St

ctlb: "HEAD,* c-rulename

-,p HEAD~etlb

( N ,St ring)

cslb: + termpart

-' TERpesilb

(NT, termpart;

LOPT~cstb)

z:o NT,termoert;

IOPT#Cslb

z 2 (termpartJ)



termpart: I literal format)

=) ALT~termpart

f:NT,format

=> {(tervnparti"

a-rule: a-rulename *:" adef

=> HEADva-rule

CNTPSt ring;

NTvadef;

NTF a t I

NT, at2;

NT as 1;

NT, as2)

ade f: altllst 0"

=2 HEADtadef

(NTaltl 1st)
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aitlist: a alt

(NT, aI t ;

LOPT,. t list)

: NT,alt;

LOPT,altl ist

alt: aftchar " rulename

>) HEAD, a It

C NTeCha tact er

NTPStrimg)

ati: "ALT," a-rulename

=> HEAOratl

(14TPSt r img)

Z> "ALT," S1:*a-rulename>"

at2: ~ attm )

=> NEAO,at2

(NT,al ttemp)

=> "5~i)
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al t-temp: alt-t :eg

=>LOT,at-temp)

2) NT~altt-eP

LOPTpal t-temP

: (alt-t)"

alt-t: aitchar ":NT#" rulename

: HEAOfalt-t

(NT ,Chaboac ter;

NTSt rimrg)

Z) SI:"<altchar>" ": NT," S2=*rulename>"

asi: U'a-rulename "

2' >IEAD,asl

(NT, String)

=> 04" SI:"ca-rulename)'" "I"

&92: a(* aft-disp M)"

22k HEAO,as2

(NTsaIt-di up)



altio: Lr Taltdso.

(NT,a I t -d;

LOPT,al t-disp)

: NT~alt-d;

LOPT,al t-di ip

w~ alt-disolw

alt-d: aitchar ":" rulename

z'tEAO,alt-d

(NT, Character;

NT,St ring)

i-rule: i-rulenae 0:0 idol

=> tIEAD,i-.rule

(NTSt ring;

NT, idol;

NT,it 1;

NT, i t2;

NT, 1.1;

NT, i s2)

=30 SI:*i-ruenameoN a:" $2

"cow S3 "co 34 azo *5=>a



Iidef; "t" rulenamnel

=> HEAO,idef

(NVStrimg)

iti: "ITER C NTv" rulemamel IOPT,w i-rulename )

2 HEAD, it I

C N ,St ring;

NTString) [

I211OTER ( NT#* Slz"-cruienamei'" IUTP

32:"'ci-rulename>"

it2: "NT," rulenamel "; IOPT," i-rulename

=71 HEAD, it2

(NT#St ri ng

NTSt rimg)

=7, ONT," $13"<ru~enamel>" ";IOPT," S2:"<i-vrulename>"*

-) HEAvi s I

isZ: "C" i-pulename "I"

-)HEAD, is2

(NT, String)

~ *(WSlz*<i-rulename,!O" "I*

15q



I-ule: 4 I-rule-a

1-rule-b

1-rule-c

=> ALI,1mrule

S{a:NTPI-rule-a

b:NT,1-rule-b

C:NTPI-rule-c

=> 64 a:)-rule-a b:1-rule-b 1C:1-rule-c )

1-rule-a: 1-Pulename :6Idef-a

2> HEADPI-rule-a

(NTString;

NT, Idef-a;

NT, it I

NT, I t2a;

NT,11;

VT, I 92a;

NT , I s3)

:S1=*0-ru~ename>" 0n:0 $2

$.6 3 3-654 6:6$5 6 6 S $7
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Idef-a: #"rulenamel rulename2 ."

Z> HEADuldef-a

NT ,St ring)

It~a: "NT," rulename2 "; NT," rulenamel

*; LOPT," I-uleae

(NT, Stri1ng;

NTString;

NT, Scei ng)

=> "NT," 5l:'(fulemame2>" 0; NT," S2=*<ru~enamel>"

"; LOPT," S3:'(1-,.ulename>"*

I s2a: 5S

=> HEADPls2a

:) SlS~w



I-ule-b: 1-rulename "? def-b

=> HEAD,1-rule-b

(NTSt ring;

NT, I def -b;

NT, It I;

NT, 1 t2b;

NT, I s I

NT, 1 s2b;

NT, pIs3)

ldef-b: ""rulenamel "E* rulename2 "I "."

: IEAD,ldef-b

(NT, Stri1ng;

COPT#St rirg)

lt2b: "COPT," rulename2 "; NT," rulename1

;LOPT," 1wrulename

>~ HEAD#lt2b

(COPTStritng;

NTPString;

NTiString)

"COPTP" S1z"<ru~ename2)" "; NT," S2="<ru~enamei."

0; LOPT," S3="c1Ig.uename>"
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I s~b: "$I=(" rulename2 "IS2"

:> tEAD,is2b

WNTSt ring)

1-rule-c: 1-rulename ": def-c

=> HEAD,1-rule-c

C NTtSt ring;

NT,Idef-c; L

NT It 1;

NT,l1t2c;

NT, l;k

NT,l1s2c;

NT, 1 s3)

S.~ 3 N.=>N $4 "=>" S5 So $ " $7

ldef-c: *rulenamel terminal ."

5,HEAD,ldef-c

(NTSt ring;

NT,terminal )

I b3



It2c: "NT.," rulenamel "; LOPTp" I-rulem;r,me

Z> HEADOO1tc

(NT,String;

NT, Stri*ng)

ls.2c: termin~al *SI"

=> HEAD#ls2c

i:l *LIST (NT," rulenamel ".LOPT," 1-rulename "

=> HEAD, It I

(NT,String;

NI ,Stri ng)

Z> OLIST ( NT," Si:"rulenamel>" ;LOT,"

S2:"<1-rulename>" w"

ISI: "Stu

=> HEAOPlsl

"SIN

133: NO" Irulenawe "IN

=> HEAD,1s3

(1-ru1 ename)

=> "C" SW:"c-rulename' *""



terminal: literal

:~Headfterminal

(NT, St r1ng)

=> ... S1="<terminal>W "M

literal: literal

=> Head,literal

C NT ,St ring)

format: (newline 'tab :untab)
=> ALT,tormat

' {n:NT,newHne

t:NTptab

Iu:NT,untab

w~(tormat)"

:, (n:mewline 1t:tab 1u:untab I

newline: "NL"

=> HEAD,newline

=> ONL"

tab): "TBO

Z2 HEAD,teb

lbs



Untab: "UTj"

=I> HEAO~untab

:" IJTO@

extensions: userpdr userodt

:H EAD,extensions

(NT, useiodr;

NT,userodf)

: $1 $2

userpdr: (undefined)

userpdf: (undefined).

Strinov Integert and Character are system predefined rules.
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APPENDIX F: MEMORANDUM LANGUAGE DEFINITION

The following Language Definitio,, constructed by hand,

illustrates the templates and schemas required for the de-

finition of a simple grammar. When realized as an AST via

the ILD Grammar Directed Editor and interpreted by the sys-

tem predefined function ILD, this Language Definition could

be installed in the Language Definition module as oart of a

Memorandum GDE.

memo~lsalutationl body (closing)

z>ILD,memo

(COPTpsal utat ion;

NT, body;

COPrclosing)

z:,NL S1z"Isalutationl" $2 NL TO3 TS TO S3="(closing)".

salutatiom:"Dear" name "#*

=>HEAD~salutat ton

(NTSt ring)

body: + paragraph

211ITER,body

(NT, paragraph ;

roprobady)



:>NT, oaragraph;

IOPT, body

3,Nl- TS UT SI

='NL 0 LparaqraphI"

paragraph: + lines

=' I TER, Paragraph

(NTSt H ng;

IOPTeparagraoh)

=>TSt ring;

IOPTooaragraph

=),,"Hine] NL

closing:*SincereI y, name

=>HEADocl1osingl

(NTSt H nq)

:>"Sincerelyv" NL S1:"<name>"

Strinq is a system predefined rule.



APPENIuTx Gt:YT P .;uFF TiFL) F 11Ii rrU'.o

[He feoIlowinq is a list of orf d'Yi-a-1tV7 I annu-i-C 01ri I

t i v onera3tionso qe r iv eI in nrt~ t ro- f-ralt ,1I 0 7rlJ, 'co

coulaJ up imrlI~mpnred as Syvstem~ Prpoefineu Furnctin. His

list is not intenoca as a co.-Qreheflsivp collpction o4 tm

orimitives riesired4, or even reouired, for 1nlmtti Of

a GnfE system. Pather, these fun~ctions ar nreseflel "iepe j,

an indlication of the classes of ooeratlonS O~ICM, -iint Ca

madje av.~ilahle in supoort of use:rs of tie Lat.

Svnttiesi s Uoerators

1 T

3. COPT

4. LOfPT

5. AL T

b . TF~im

7. riEAf

83. ITEP

9. LTST

Ari thmet ic Operators

I U. PLUS

I1I. MTNUS

12.~~ ~ ~ ~ MIL 0qt~ict



13. DIV division

14. REM remainder

15. UPLUS unary plus

1b. UmINUS unary minus

Relational Operators

17. EQUAL equality

18. NTEQ not equal

19. GT greater than

20. LT less than

21. GTE greeter than or equal

22. LTE less than or equal

8oolean Operators

23. AND

24. OR

25. NOT

Assignment Operators

2b. ASNA arithmetic assionment

27. ASNS strlnq assiqnment

Sequence Control Operators

28. COND if-then-else conditional

29. LOOP generalized loop

30. CASE

.
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Symbol Table and Data Element Operators

32. DECLARE declaration

33. BLOCK

34. IDENT identifier

35. NUMBER

36. STRING

System Operators

37. LLD AST to Language Definition translation

miscellaneous

38. NOP null operation
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APPENDIX H. FIGURES

<root>

Oroqram <id> ( <names) ) ; <block>

tree <id> l(names)

input <i'32, l(names)

output

o(l) odt) o(v) o(sr) beqin <statements> endI I, "
<vars> <statement> l(statements)

,I It

var <v-decls) ; o(integer) o(action)

<names> : <type> <assignment>

<io> l(names) <id> <variable> : <expr>

I I I
a inteaer <id> o(modifiers) <s-expr>

a o(siqn) 'u-expr>I
Note: non-terminal names -term>I

have been abbreviated. <factor)

<v-or-C>

proQram tree (inputpoutput); <u-constant>

var : a; I
begin 1

a := 1
end.

Figure 1. Parse tree for a trivial program.
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CONCATENATION:c :X1 X2 *,, xn , XK 
=  rk "k ]" t

<rK) if xk = tK

copt(rk) if xk = L"rk""

copt(r) < <e>

ALTERNATION:
a : 4 ti "' r,2 - , ... "' rn

<a> => A <rl>I <r2> , . (<n> )

ITERATION:
i : 4+ p

<> => Cr> iopt(i)

iopt(i) < <r> iopt(i)

LIST: x r2 I t
1 : "#= rl x"...

<!>=> <rl> 1o~t(1)

<r2> <rl> lopt(l) if x r2

lopt(l) Z> copt(r2) <rl> lopt(l) i f y "t"r2-1-
<el,>I lopt(l) it x = t

PREDEFINED:
P : pdf

<P> pdf(P)

UNDEFINED:

AC U) 2 -2

c in C 4 concatenation rules )

a in A = alternation rules )
i in I = 4 iteration rules )

I in L = 4 list rules )

p in P = 4 predefined rules

u in U = undefined rules )

r in R 2 4 CAILPU )

t in T = 4 terminal symbols i

Figure 2, Transformations



CONCATENATION:

C ;'xl ii ... Xn xk 4 rk s([rk ]" tk t
NTfrk if xk = rk

CUPT,rk if xk = "Lrk"]

COPT,r :> NT,r

ALTERNATION:

a "0 *1 l "'1 " r2 " .. rn

NT,. => f NT,rl NT,r ... : NTrrn }

I[iRATION:i : U t a r i

NT,i > NTr IOPT,i

IOPTi =) NT,r IOPTpi

1 : 10 ri x ... x = I r2 t "({r2'J" t i

NTl = NTrl LOPT,l

NT~r2 NTerl LUPT,l if x z r2
LOPTvl => COPTvr2 NT,rl LUPTI it x =

NTrl LOPT,l if x =

PREDEFINED:
p : pdf

NTop => PDF(o) p

UNDEFINED:

NT,u 3> NTpu

c in C = concatenation rules }
a in A ( alternation rules }
i in [ 4 iteration rules )
I in L z 4 list rules )
p in P = predefined rules )
u in U z 4 undefinea rules )
r in R a 4 CPAIL.P,U )
t in T z terminal symbols 1

Figure 3. Labelled Transformations
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CONCATENATION:
c : x1 x2 .o. xM xk rk "("rk"I" tk )

NT rk if xk 2 rk
NT oc Z>

COPrrk if xk = "|"rk"]"

COPT,r => NTr

ALTERNATION:
a : *(e rl "," r2 ":" N.. " W)W

NT,a => ALTa
ALT,a => { NTr1 NT,r2 : ... : NT,rn

ITERATION:
i : "+"

NT,, => NTpr IOPTi
IOPT,i => NT,r IOPTi

LIsr:

I : "#. rl x . . x = i r2 : "["r2"J* t )

NT,I => NTrl LOPTl

NT,r2 NT,rl LOPTl if x = r2
LOPT,) Z> COPT,r2 NT,rl LOPT,I if x z "["r2"J"

Nr,rl LOPT,l if x = t

PREDEFINED:
p : pdf

NT,p Z> TERM,p
TERM,p :> PDF(p),p

UNDEFINED:

NT,u 2> NT,u

c in C = 4 concatenation rules )
a in A = 4 alternation rules k
i in I z iteration rules )
1 in L z list rules )
p in P z A predefined rules }
u in U 2 ( undefined rules )
r in R 2 ( C,A,IL,PU )
t in T 2 ( terminal qymOols I

Figure 4. Extended Transformations
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